
CSE 303 Lecture 20 11/22/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 11/22/2006

Lecture 20 –
Debuggers

11/22/2006 CSE 303 Lecture 20 2

Administravia

• HW6 Due 30 Minutes Ago!
• Societal Implications 4 next Wednesday

– We'll resume discussion of DRM
– No new reading

• Short Paper Instructions are posted
– Due last day of class
– This is 2 days after HW7

• HW7 Posted by Monday

11/22/2006 CSE 303 Lecture 20 3

Where We Are

• Tools for working on larger projects
– Specification/Testing
– Version Control Systems
– Build Scripting

11/22/2006 CSE 303 Lecture 20 4

Today

• Debuggers
– Role
– How they work
– The art of debugging

• GDB

11/22/2006 CSE 303 Lecture 20 5

Role of a Debugger

• Helps you see what's going on in program
• More accurate name: "Execution Monitor"
• Debugger Capabilities

– Start program with arguments
– Suspend execution

• At predefined "breakpoints"
• Possible to break on some condition

– Examine suspended state of program
– Change the values of variables (sometimes)

11/22/2006 CSE 303 Lecture 20 6

How Debuggers Work

• Program has special links to source code
– These make programs much larger

• Most projects have "Debug" and "Release" builds
• External libraries may also have debug versions

– gcc & g++ add debug info with -g flag

• OS hooks for examining program state

CSE 303 Lecture 20 11/22/2006

2

11/22/2006 CSE 303 Lecture 20 7

The Art of Debugging

• A debugger won't solve all your problems
– Stopping program too late to find problem
– Trying to "debug" the wrong algorithm
– "Debugging" vs. "Understanding the program"

• Debugging C/C++ vs. Java
– No crashes != Correct program
– Java easier to debug: No crashes or memory errors
– But programming Java is "easier" for same reason

11/22/2006 CSE 303 Lecture 20 8

Debugging with GDB

• Running gdb
– Command Line: gdb programname

• Source files should be in same directory
– Emacs: M-x gdb

• Current file must be in directory of program/source

• Note: There are many other debuggers
– dbx, jdb (for Java)
– Debuggers integrated into IDEs

• But concepts are the same

11/22/2006 CSE 303 Lecture 20 9

Example: Locating a Crash

• Approach 1: Execute program in gdb

-bash-3.1$ gdb bug4
…
(gdb) run
…
Program received signal SIGABRT, Aborted.
0xffffe410 in __kernel_vsyscall ()
(gdb) where

11/22/2006 CSE 303 Lecture 20 10

Example: Locating a Crash
(gdb) where
#0 0xffffe410 in __kernel_vsyscall ()
#1 0x4320bee9 in raise () from /lib/libc.so.6
#2 0x4320d4f1 in abort () from /lib/libc.so.6
#3 0x4324053b in __libc_message () from

/lib/libc.so.6
#4 0x43247a68 in _int_free () from /lib/libc.so.6
#5 0x4324af6f in free () from /lib/libc.so.6
#6 0x43dc96c1 in operator delete () from

/usr/lib/libstdc++.so.6
#7 0x080485d7 in ~A (this=0xbfbdb744) at bug4.cpp:5
#8 0x08048567 in main () at bug4.cpp:19
(gdb) up
(gdb) <pressing return repeats previous command>

11/22/2006 CSE 303 Lecture 20 11

Example: Locating a Crash

• Approach 2: Examine a core file
– Need to set max size allowed for core files

ulimit -c 16000

– Run program as usual
Aborted (core dumped)

– Examine core file with gdb
dgb bug4 core.10050
(gdb) where

– Same output as Approach 1

11/22/2006 CSE 303 Lecture 20 12

Example: Suspending a Program

• Approach 1: Send interrupt
gdb heaptest
run 10 Note here that you can supply arguments
(user presses Ctrl-c, or Ctrl-c Ctrl-c if in Emacs)
Program received signal SIGINT, Interrupt.
0xffffe410 in __kernel_vsyscall ()

(gdb)

CSE 303 Lecture 20 11/22/2006

3

11/22/2006 CSE 303 Lecture 20 13

Example: Suspending a Program

• Approach 2: Place a breakpoint
gdb heaptest
break heaptest.c:26
run 10
Program received signal SIGINT, Interrupt.
0xffffe410 in __kernel_vsyscall ()

(gdb)

11/22/2006 CSE 303 Lecture 20 14

Working with Breakpoints
• Function Names

break main

• Within files
break heap.c:HeapInit

• Within methods
break Point::GetX

• Delete all breakpoints
delete

• Clear one breakpoint
clear heap.c:HeapInit

• Conditional breakpoint
break Point::SetX if newX==1

11/22/2006 CSE 303 Lecture 20 15

Inspecting the Program

• Inspecting arguments and local variables
(gdb) info args Show arguments
(gdb) info locals Show local variables
(gdb) info variables Show locals and globals
(gdb) p variable_name Print a variable

11/22/2006 CSE 303 Lecture 20 16

Inspecting the Program

• Where are we?
(gdb) where Show call stack
(gdb) frame Show current activation record
(gdb) up Move "up" the call stack
(gdb) down Move "down" the call stack
(gdb) l Print 10 lines of context

• Names of variables depend on current
stack frame

11/22/2006 CSE 303 Lecture 20 17

Other Commands

• Executing Step-by-step
(gdb) n Execute one statement and stop at next
(gdb) s Step inside function
(gdb) c Continue until next breakpoint

• Quitting
(gdb) quit

11/22/2006 CSE 303 Lecture 20 18

Summary

• Debuggers important for fast development
• Understand what the tool provides you
• Use it to accomplish specific tasks

– "I want to know the call stack when I get the
NULL-Pointer dereference"

• Avoid command line
– Use Emacs
– Use an IDE

CSE 303 Lecture 20 11/22/2006

4

11/22/2006 CSE 303 Lecture 20 19

Reading

• Programming in C
– Chapter 18: Debugging Programs

11/22/2006 CSE 303 Lecture 20 20

Next Time

• Profilers

