
CSE 303 Lecture 19 11/17/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 11/17/2006

Lecture 19 – Build Scripting

11/17/2006 CSE 303 Lecture 19 2

Administravia

• HW6 went out, project directories set up
– It was late, sorry
– Hopefully, it will be short

• Societal Implications on Monday
– Do the reading
– Send in your summary

11/17/2006 CSE 303 Lecture 19 3

Academic Integrity

• Complaints of policy violations
• The Gilligan's Island Rule

– Please observe it
– It's for your benefit
– It strikes a balance between

• Need to collaborate
• Need to evaluate students individually

– Congrats to all who are walking the line

11/17/2006 CSE 303 Lecture 19 4

Academic Integrity

• Gilligan's Island Rule Do's and Don'ts
– Do discuss specifics of homework
– Do arrange times with friends for discussions
– Do bring your own code into discussions
– Do ignore the rule when talking to partner

– Don't modify turn-in for 30 minutes after discussion
– Don't discuss homework in the labs
– Don't keep written records from discussions

11/17/2006 CSE 303 Lecture 19 5

Where We Are

• Tools for working on larger projects
– Monday

• Specification
• Testing

– Wednesday
• Version Control Systems

11/17/2006 CSE 303 Lecture 19 6

Today

• Build Scripting
– Steps in building an executable
– The need for scripting

• Execute repetitive commands
• Avoid repeating unnecessary build steps

– Recompilation Management
• Theory
• Practice: make

CSE 303 Lecture 19 11/17/2006

2

11/17/2006 CSE 303 Lecture 19 7

Build Process (In Lecture 12)

Executable
Preprocessed

.c File.c File
C Pre-

processor
C

Compiler

11/17/2006 CSE 303 Lecture 19 8

Build Process (More Complete)

Source File
(.c, .cpp)

Pre-
processor Compiler Linker

Preprocessed
Source File

Object File
(.o) Executable

Standard
Library

gcc and g++ handle this process automatically for a small number of files

11/17/2006 CSE 303 Lecture 19 9

The "Real" Build Process

Source Files
(.c, .cpp)

Pre-
processor Compiler

Preprocessed
Source Files

Object Files
(.o) Executable

Library

Library

Pre-
processor Compiler

Linker

Pre-
processor Compiler

11/17/2006 CSE 303 Lecture 19 10

The "Real" Build Process

• Many files, many steps
– And they keep piling up

• Steps for generating documentation
• Steps for running tests
• Steps for generating source files (not in 303)

– Need help to manage steps
• So you can give a whole project to others
• So you can avoid repeating steps

– Big projects can take many hours to build
– What if you want to change one line in one file?

11/17/2006 CSE 303 Lecture 19 11

Our Build Process (up to now)
gcc -Wall heaptest.c heap.c allocreclist.c

• How have you dealt with this?
– Retype it every time

• Shame shame!
– Use up-arrow or history

• Shame! (You have to re-type it after logout)
– Use alias or bash script

• Good thinking!
– Use a Makefile

• You're ahead of the game

11/17/2006 CSE 303 Lecture 19 12

Recompilation Management

• Dependency DAG avoids unnecessary work
– To create target T you need

• Sources s1, s1,… sn

• Command c that creates T from sources

– If T is newer than every source, don't run c
– Recursive building:

• A source s may be a target with it's own dependencies
• In this case, T is dependent on s's sources as well

– Cycles are problematic in theory, but can be handled
• (DAG = Directed Acyclic Graph)

CSE 303 Lecture 19 11/17/2006

3

11/17/2006 CSE 303 Lecture 19 13

C/C++ Recompilation Management

• Compiling .c /.cpp creates .o
– Target: .o file
– Sources:

• .c /.cpp file
• All .h files included by .c /.cpp file
• Plus all .h files included by those .h files …

– This is why careful header design is important!
• Creating an executable (linking)

– Target: executable file
– Sources: All .o files

11/17/2006 CSE 303 Lecture 19 14

Dependency Graph for HW4

allocrec-
list.h

allocrec-
list.o

heap.h
heap.o

heaptest.o

(Build targets are in red)

allocrec-
list.c

heap.c

heaptest.c

heaptest

Header Files C Files Object Files Executable File

11/17/2006 CSE 303 Lecture 19 15

How would you handle this?

• Imagine a script that handles this
– Inputs:

• A dependency DAG (targets, sources, commands)
• A current target to build

– Actions
• Determine which sources are out of date
• Build sources (in order) if necessary

• This is what build tools do!
– Many exist: make, ant, most IDEs

11/17/2006 CSE 303 Lecture 19 16

Make basics
target: sources

command

• Syntax Gotchas
– The colon after the target is required
– Command lines musts start with TAB

• Not spaces!

– Can have multiple command lines for each target
• Multi-line command? End previous line with \

– Which shell language for commands?
• Whatever set in SHELL environment variable

11/17/2006 CSE 303 Lecture 19 17

Notes on gcc/g++

• Use gcc and g++ with the same options
– To compile without linking: -c
– To specify file name of output: -o filename
– To link: run on .o files instead of .c/.cpp files

g++ -o programName class1.o class2.o

11/17/2006 CSE 303 Lecture 19 18

Makefile for HW4
heaptest: heaptest.o heap.o allocreclist.o

gcc -o heaptest heaptest.o heap.o allocreclist.o
heaptest.o: heaptest.c heap.h

gcc -Wall -o heaptest.o -c heaptest.c
heap.o: heap.c heap.h allocreclist.h

gcc -Wall -o heap.o -c heap.c
allocreclist.o: allocreclist.c allocreclist.h

gcc -Wall -o allocreclist.o -c allocreclist.c

CSE 303 Lecture 19 11/17/2006

4

11/17/2006 CSE 303 Lecture 19 19

Using Make

• At the prompt
-bash-3.1$ make -f makefileName targetName

• Defaults
– If no -f: use a file named Makefile
– If no target specified: use the first one

11/17/2006 CSE 303 Lecture 19 20

Basics of Make

• Summary
– scripting + dependency analysis = make
– Not language or tool specific

• Rest of lecture: better Makefiles
– Short and modular
– Easy to reuse (different flags, platforms, etc.)
– Useful for many tasks
– Automatically maintained dependencies

• Trick most of us use: Copy Makefiles!!!

11/17/2006 CSE 303 Lecture 19 21

Make Variables
CC = gcc
CFLAGS = -Wall
OBJECTS = heap.o heaptest.o allocreclist.o

heaptest: $(OBJECTS)
gcc -o heaptest $(OBJECTS)

heap.o: heap.c heap.h allocreclist.h
$(CC) $(CFLAGS)-o heap.o -c heap.c

• Why do this?
– Easier to change build options for everything
– Easier to reuse Makefiles

11/17/2006 CSE 303 Lecture 19 22

Targets without sources
clean:

rm $(OBJECTS) heaptest

• Why "clean"?
– Convention: Way to "start over"

• Type make clean to clear away all objects
• Type make after that to start build from scratch

– Note: no target, so it will always run command

11/17/2006 CSE 303 Lecture 19 23

More Funny Characters

• Consider using these
– $@ for target
– $^ for all sources
– $< for left-most source

heaptest: $(OBJECTS)
$(CC) $(CFLAGS) -o $@ $^

heap.o: heap.c heap.h allocreclist.h
$(CC) $(CFLAGS) -o $@ -c $<

11/17/2006 CSE 303 Lecture 19 24

Generating Dependencies

• Manual tracking of dependencies is a pain
• Forget a dependency?

– Introduce subtle bugs
– Get confusing build errors if you're lucky!

• Generating dependencies automatically
– Use gcc -M (or -MM or -MG)
– Use an IDE that does this for you
– This is beyond the scope of this class

CSE 303 Lecture 19 11/17/2006

5

11/17/2006 CSE 303 Lecture 19 25

Summary

• Always script complicated build tasks
• make can handle building in any language
• Lots of tricks for keeping Makefiles neat
• Lots of conventions in Makefiles

– Reuse them often!
• Learn about dependency generation

– Not in this class, but VERY handy
– If you use an IDE, this is handled for you

11/17/2006 CSE 303 Lecture 19 26

Next Time

• Digital Rights Management

