
CSE 303 Lecture 17 11/13/2006

1

CSE 303
Concepts and Tools for 
Software Development

Richard C. Davis
UW CSE – 11/13/2006

Lecture 17 –
Specification and Testing

11/13/2006 CSE 303 Lecture 17 2

Administravia: Midterm

• Lowest: 17.5 (30%)
• Highest: 51.5 (89%)
• Average: 36 (62%)
• Std Dev: 9.6 (17%)

Midterm Distribution

0
2
4
6
8

10
12
14

20 25 30 35 40 45 50 55

Score

# 
of

 S
tu

de
nt

s

11/13/2006 CSE 303 Lecture 17 3

Administravia: Midterm

• Don't Panic!  
– This was a very hard exam
– It's only 20% of your grade

• We'll adjust scores
– 4(b) will be extra credit

• We'll make sure people who invested time won't be penalized

• You can still pull up your score
– Do well on homework
– Final will be easier

11/13/2006 CSE 303 Lecture 17 4

Administravia: HW4
• Many used .c and .h files improperly

– .h
• Contain function prototypes & typedefs
• For a set of related functions
• In C++, contain class definitions

– .c
• These are the files you compile
• They include the ".h" files needed

• We won't count off much for this on homework
– Hard for you to understand why we use this structure
– You'll understand more when we cover build scripting

11/13/2006 CSE 303 Lecture 17 5

Administravia: Study Session

• Struggled with C on midterm or HW4?
• Come to study session tonight

– Need to make sure you're not falling behind
– We'll cover midterm and HW4 questions

• Office hours today if you can't make it

11/13/2006 CSE 303 Lecture 17 6

Administravia: HW6

• Repeat: Choose a partner now!
– Send e-mail with choice to Lincoln Ritter
– Team project directories will be created
– This will take a day after Lincoln gets e-mail



CSE 303 Lecture 17 11/13/2006

2

11/13/2006 CSE 303 Lecture 17 7

Where Are We?

• Up to Now
– Getting around Unix
– Shell Scripting
– C
– C++

• From Now On
– Good software development practices
– Tools for managing larger projects

11/13/2006 CSE 303 Lecture 17 8

Today

• Basic Software Engineering
– Development Process
– Specification
– Unit Testing and Stubs

11/13/2006 CSE 303 Lecture 17 9

Software Development Process

• Main steps in building a system
– Requirements Analysis
– Specification
– Design
– Implementation
– Testing
– Documentation
– Maintenance

11/13/2006 CSE 303 Lecture 17 10

Software Development Process

• Requirements analysis
– What are we supposed to build? What do our 

customers need?
• Specification

– Precise description of provided functionality
– How Precise? Depends on what's being built

• Design
– Define the internal software architecture
– Break system into components

• Modules, interfaces, classes, etc.

11/13/2006 CSE 303 Lecture 17 11

Software Development Process

• Implementation
– Write the code and perform simple tests

• Testing
– Extensive testing of parts and whole system

• Documentation
– All steps in the process must be documented
– User guide, developer's guide, etc.

• Maintenance
– Fixing bugs, working on later releases

11/13/2006 CSE 303 Lecture 17 12

Software Development Process
• Main steps in building a system

– Requirements Analysis
– Specification
– Design
– Implementation
– Testing
– Documentation
– Maintenance

• Order of steps varies, frequent iteration
• How formal? Depends on what you're building

The software process 
•Guides your efforts
•Helps clarify thoughts
•Helps you communicate ideas
•You can view it as a tool!



CSE 303 Lecture 17 11/13/2006

3

11/13/2006 CSE 303 Lecture 17 13

Specification

• Writing a complete specification is hard
– Often as difficult as writing code
– Even worse when specification is formal
– Partial specification is better than none

• Specification helps later parts of process
– Implementation
– Test Development
– Maintenance

• Iterating is normal! Often need to fix spec.
11/13/2006 CSE 303 Lecture 17 14

Specification Example

• Let's write an informal specification for
void insert(Node** head, char * val);

11/13/2006 CSE 303 Lecture 17 15

Specification First Attempt
/**
* Inserts a value into the list
* @param head : address of pointer to 
*        the first element in the list
* @param val : new string to insert
* @return nothing
*/
void insert(Node** head, char * val);

11/13/2006 CSE 303 Lecture 17 16

A Better Specification
/**
* Inserts a value into the list. 
* Does not check for duplicates.
* Makes a copy of the inserted string.
* Precondition: val is not NULL.
* Postcondition: List is sorted in 
*                alphabetical order
* @param head : address of pointer to 
*        the first element in the list
* @param val : new string to insert
* @return nothing
*/
void insert(Node** head, char * val);

11/13/2006 CSE 303 Lecture 17 17

Minimum Specification

• Describe what the function/method does
• Describe parameters (are they modified?)
• Describe what the function returns
• State preconditions

– Assumptions about parameter values
• E.g., string not NULL, units are inches, x > 0…
• Avoid trusting callers.  Check preconditions.

• Describe side effects
– E.g., modifies global vars, reads/writes file

11/13/2006 CSE 303 Lecture 17 18

Testing

• Goal: Verification and validation
– Does the system work?
– Does it do what it is supposed to do?
– Increase our confidence in the system

• How do we know when we are done?
– Coverage metrics exist

• Execute each statement at least once
• Execute each branch or path at least once

– In Practice, you're never done testing



CSE 303 Lecture 17 11/13/2006

4

11/13/2006 CSE 303 Lecture 17 19

Two Basic Types of Tests

• Black Box Tests
– Test without looking at implementation
– Design test cases in terms of specification
– Very useful in practice
– Ideally, someone else should write them

• White Box Tests (a.k.a. "Glass Box" tests)
– Take implementation into account
– Easier to ensure good coverage
– Common sense: Test all branches once

11/13/2006 CSE 303 Lecture 17 20

More Types of Tests

• Unit testing
– Test one class at a time

• Integration testing
– Test a number of classes together

• System testing
– Test an entire working system

• Perform them all as you develop

11/13/2006 CSE 303 Lecture 17 21

Regression Testing

• Save tests as you develop
– Tests exercise more and more features

• Run all tests automatically
– Every time you add a feature
– Every time you fix a bug

• Helps to verify that everything still works

11/13/2006 CSE 303 Lecture 17 22

Stubs

• How test a class when it uses classes that…
– Do not exist?
– Are buggy?
– Are too large and slow?

• Answer: create "fake classes"
– One for each class that doesn't exist
– Just good enough for the tests
– As small as possible, so often called a stub

11/13/2006 CSE 303 Lecture 17 23

Summary

• Software devel. involves several steps
– Carefully think about what you must build
– Carefully think about how to build it
– Prepare tests based on your specs
– Implement, test, and document

11/13/2006 CSE 303 Lecture 17 24

Next Time

• Version Control Tools


