
CSE 303 Lecture 16 11/8/2006

1

CSE 303
Concepts and Tools for
Software Development

Richard C. Davis
UW CSE – 11/8/2006

Lecture 16 –
C++ Class Details

11/8/2006 CSE 303 Lecture 16 2

Administravia

• Midterm not ready
– It is my highest priority in life from this moment on.

• Adding 1 Late day
– Total is now 4
– If you feel cheated on HW4, talk to me and we'll

arrange something
• Must do HW6 and HW7 in groups of two

– Choose a partner now!
– Send choice to Lincoln Ritter

11/8/2006 CSE 303 Lecture 16 3

Today

• More on object allocation
– Stack vs. Heap-based objects
– Object data members: objects or pointers?

• Thorny details
– Automatically created methods
– Constructor details
– const

• Utility classes (vectors, strings, iostreams)

11/8/2006 CSE 303 Lecture 16 4

Stack-based Objects
class IntCell {
int i;
int j;

}

IntCell ic;

Stack

&ic
int i
int j

…

…

Heap

11/8/2006 CSE 303 Lecture 16 5

Why Stack-based Objects?
• C++ makes "primitive semantics" possible

– Manipulate objects as if they were primitive types
– Avoids manual allocation/de-allocation

• Big source of errors
• But lots of hidden copying!

– Operator Overloading for classes
IntCell ic3 = ic1 + ic2;
• Helps to make primitive semantics possible

• HW5 focuses on stack-based objects
– You're not familiar with it
– You can easily trip over it

11/8/2006 CSE 303 Lecture 16 6

Heap-based Objects
class IntCell {
int i;
int j;

}

IntCell *pic = new IntCell();

Stack

&pic

…

…

Heap

int i
int j

CSE 303 Lecture 16 11/8/2006

2

11/8/2006 CSE 303 Lecture 16 7

Why Heap-based Objects?

• It's similar to Java
• But you have to manually free all memory

IntCell *pic = new IntCell();
delete pic;

11/8/2006 CSE 303 Lecture 16 8

Stack vs. Heap based Objects

• Which is better? You judge
– Heap-based: Java-like semantics, manual memory mgmt
– Stack-based: Primitive semantics, hidden copies

Stack

int i
int j

…

…

Heap

Stack-based

Stack

…

…

Heap

int i
int j

Heap-based

11/8/2006 CSE 303 Lecture 16 9

Data members: objects or pointers?

int arr[0]

• Which do you choose?
– Similar to stack-based vs. heap-based object question
– You must be the judge of this as well

• Compare ObjData.cpp and PtrData.cpp

Object Data
Members

Pointer Data
Members

int arr[1]
int arr[2]

int arr[0]
int arr[1]
int arr[2]

11/8/2006 CSE 303 Lecture 16 10

Thorny Details

• Complicated C++ object details
– Can cause unexpected behavior
– We'll cover the high-level bits
– HW5 helps you think about these

11/8/2006 CSE 303 Lecture 16 11

Thorny Details:
Automatically Created Methods

• C++ Defines several hidden methods
– The "Big Three"

• Destructor
• Copy Constructor
• Assignment Operator

– Default Constructor
• You can define all of these yourself

– Doing so overrides default
• Warning: Be aware of these!

11/8/2006 CSE 303 Lecture 16 12

The "Big Three"
• Copy constructor

Class(const Class &rhs);
– Default calls copy constructor on all data members
– copy constructor for primitive types copies bits

• Assignment operator
const Class &operator=(const Class &rhs);
– Default calls assignment operator on all data members
– Assignment operator for primitive types copies bits

• Destructor
~Class();
– Does NOT call delete on any data members!

CSE 303 Lecture 16 11/8/2006

3

11/8/2006 CSE 303 Lecture 16 13

When are copies made?
IntCell a; // 0-arg constructor
IntCell b(a); // Copy constructor
IntCell c = a; // Copy constructor
IntCell d; // 0-arg constructor
d = a; // Assignment operator
vector<IntCell> v;
v.push_back(a); // Copy constructor

• Hard to remember which happens when!
– There's an extra credit problem in HW5 for the curious

11/8/2006 CSE 303 Lecture 16 14

Trouble with the "Big Three"
• Default copying can cause unexpected behavior

– Especially with pointer data members (shallow copies)
– See PtrDataBug.cpp

int fun() {
IntCell ic1;
IntCell ic2 = ic1;

}
• Lesson: When using pointer data members

– Define your own Copy Constructor
– Define your own Assignment Operator

ic1
ic2

???
???

Stack Heap

11/8/2006 CSE 303 Lecture 16 15

Trouble with the "Big Three"
• Default copying can cause unexpected behavior

– Especially with pointer data members (shallow copies)
– See PtrDataBug.cpp

int fun() {
IntCell ic1;
IntCell ic2 = ic1;

}
• Lesson: When using pointer data members

– Define your own Copy Constructor
– Define your own Assignment Operator

ic1
ic2 ???

Stack

0

Heap

11/8/2006 CSE 303 Lecture 16 16

Trouble with the "Big Three"
• Default copying can cause unexpected behavior

– Especially with pointer data members (shallow copies)
See PtrDataBug.cpp

int fun() {
IntCell ic1;
IntCell ic2 = ic1;

}
• Lesson: When using pointer data members

– Define your own Copy Constructor
– Define your own Assignment Operator

ic1
ic2

Stack

0

Heap

11/8/2006 CSE 303 Lecture 16 17

Trouble with the "Big Three"
• Default copying can cause unexpected behavior

– Especially with pointer data members (shallow copies)
– See PtrDataBug.cpp

int fun() {
IntCell ic1;
IntCell ic2 = ic1;

}
• Lesson: When using pointer data members

– Define your own Copy Constructor
– Define your own Assignment Operator

ic1
ic2

Stack

0

Heap

Deleted
Twice!!!

11/8/2006 CSE 303 Lecture 16 18

Default Constructor
• Default (0-parameter) constructor

– Calls 0-parameter constructor on all members
– Default constructor for primitive types does nothing
– Only created if you don't define a constructor

• When is this called?
– Stack-based declaration

IntCell ic;

– When initializing arrays/vectors
vector<IntCell> vec(10);

– In other constructors
• Unless an "initializer list" is used (more later)

CSE 303 Lecture 16 11/8/2006

4

11/8/2006 CSE 303 Lecture 16 19

Thorny Details: Constructors

• Initializer Lists
– IntCell(int x) : i(x) {}

– Necessary if data member has no default
constr.

• Implicit Type conversions
IntCell(int x);
IntCell ic = 5; // Implicit conversion!

– prevented by using explicit
explicit IntCell(int i);

11/8/2006 CSE 303 Lecture 16 20

Thorny Details: const
• const objects can't be modified

const IntCell ic;
ic.setValue(5); // Compile Error!

• How do we identify methods that don't modify?
void setValue(int i) const;

• const references
const Class &operator=(const Class &rhs);
– Reference parameter that works on expressions/casts!
– Returning references

• Avoid this in general! It's easy to return dangling references!
• It works in operators, because they return *this

11/8/2006 CSE 303 Lecture 16 21

Note on strings, vectors, and I/O

• All are very complex template classes
– Nasty compile error messages!

• Why are we learning to use them?
– They appear in examples and book (and HW5)
– They make life easier once you know how to use them

• Reference Materials
– Following pages give overview of everything you need
– Links to (complex) docs on course web page

• "Computing Resources" page (toward bottom)

11/8/2006 CSE 303 Lecture 16 22

Class details: vectors
• Initializing & Copying (it's stack-based!)

vector<t> vec1; : Creates Empty Vector
vector<t> vec2(5); : Calls 0-arg constr. 5 times
vector<t> vec3 = vec1; : Calls Copy Constructor

• Accessing Elements & size
int i = vec2[0];
unsigned int j = vec2.size();

• Comparing Vectors
(vec1 == vec2) : Compares size & all elements

: using object's operator== (if defined)

11/8/2006 CSE 303 Lecture 16 23

Class details: vectors (cont'd)

• Manipulating Elements
vec1[0] = 5; : Calls operator=
vec1.push_back(5); : Resizes automatically
vec1.resize(10); : Manual resize

int *p = &vec1[0];
*(p + 1) = 5; : Pointer arithmetic works!!

• Compare C and C++ in vectors.cpp

11/8/2006 CSE 303 Lecture 16 24

Class details: strings

• Use strings like vectors, plus the following
• Initialize from any (char *)

string str1 = "Hello";

• Concatenating
str3 = str1 + str2;

• Getting C-strings
char *cstr = str1.c_str();
– Don't modify the data or free this pointer!

• Compare C and C++ in strings.cpp

CSE 303 Lecture 16 11/8/2006

5

11/8/2006 CSE 303 Lecture 16 25

Class details: istreams & ostreams

• Using >> and <<
– Sends data "in the direction of the arrows"
– Most types know how to read/write themselves
– Sending endl sends '\n' and flushes stream
– Can chain expressions

cout << " " << i << endl;
• How? The result of stream << data is another stream

• To read cin until it ends, use good() method
while ((cin >> i).good()) { }

• Compare C and C++ in io.cpp
11/8/2006 CSE 303 Lecture 16 26

Reading

• C++ for Java Programmers
– Chapter 4: Object-based prog. (read most of it)

• Skip 4.7: Friends
• Skip 4.8: Nested Classes

– Chapter 5: Operator Ovrerloading
• 5.1: Basics of Operator Overloading
• 5.2: Overloading I/O

11/8/2006 CSE 303 Lecture 16 27

Next Time

• Version Control Tools

