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Lecture 10 – Structs and the Heap
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Administravia

• Optional Exercise for Assignment 3
– Write 4 programs that average numbers

1. Input on command line, all in main
2. Make input come from stdin
3. Move computation into function (static array)
4. Make function take heap allocated array

– Don't turn this in!
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Tip of the Day

• Searching in man pages
– less (used by man)

• To search for word, type /word
• To repeat previous search, type /
• Backspace to quit

– Emacs
• M-x man
• Search as usual
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Last Lecture

• Syntax
– Type names
– Arrays
– Strings

• Command-line Arguments
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Today

• Defining New Types
– Structs
– Enumerations

• Manual Memory Management
– The Heap
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Java Types vs. C Types

• Java
– Define enumeration (Java 5)
– Define class

• C
– Define enumeration
– Define struct
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Enumerations
• enum defines global integer constants

– Default: first constant has value 0
– Subsequent constants have increasing values
– Values of individual constants can be set

• Enumerations are awful
– No type safety
– No namespace
– No pretty printing

• Examples in enum.c
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C Structs vs. Java Classes

• Similarities
– Both define a named type
– Both have <type, name> pairs

• Differences
– All struct fields "public"
– Structs not automatically grouped w/functions
– Structs can be allocated on the stack

• Don't need "new" (and can't be "null")

• Example in struct.c

10/20/2006 CSE 303 Lecture 10 9

Struct Syntax
• Defining

struct rec {
int t;
char *n;
long x[4];

};
• Declaring

– struct rec r, *pr;
• Accessing

– long var1 = r.t;
– long var2 = pr->t;

• same as long var2 = (*pr).t;
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Structs in Expressions

• Can be locations (left) or values (right) 
– Field: r.t, pr->t
– Whole struct: r, *pr

• Examples
– r.t = pr->t;
– r = (*pr);

•*pr is temporarily allocated on stack, copied to r
– (*pr) = r;

•*pr is location; no temporary allocation
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Typedef creates new type name

• Defining structs with typedef
typedef struct _rec {
int t;
char *n;

} rec;

• Declaring
– rec r, *pr;

• Compare struct.c with structTypedef.c

Optional
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Manual Memory Management

• Up to now, all data has been on the stack
– Allocated when declared
– Reclaimed when function/block ends
– Array size is constant (C90 only)

• Heap allocation
– Allocated with a function call
– Reclaimed with a function call
– Array size determined at run time
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Remember the Heap?

Stack
(Dynamically Allocated)

Heap
(Dynamically Allocated)

Static Data
(“Data Segment”)

Code
(“Text Segment”)

0xFFFFFFFF

0x00000000

Address Space
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malloc

• Library function: malloc
– Takes a number
– Allocates that many bytes
– Returns a pointer to newly allocated memory

• Behavior
– returns NULL on failure
– Does not initialize the memory

• Great for hackers!
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Using malloc

• Allocating one object
– type *t = (type*)malloc(sizeof(type));

• Allocating an array of objects
– type *t = (type*)malloc(n*sizeof(type));

• Variants
– calloc: allocate arrays and initialize to 0
– realloc: attempts to resize a block
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malloc vs. Java's new

• malloc is missing some functionality
– Fields of structures not initialized
– No automatic call to a constructor

• But both return a pointer/reference!
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Freeing Memory

• Heap allocated objects "live" forever
• Quick way to run out of memory!
• Solutions:

– Java: garbage collector discards unused stuff
– C: Explicitly discard using free

• Forget to free memory?
– "Memory leak"
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Examples
int *p = (int*)malloc(sizeof(int));
p = NULL; //LEAK!!
int *q = (int*)malloc(sizeof(int));
free(q);
free(q); // VERY BAD!!!
int *r = (int*)malloc(sizeof(int));
free(r);
int *s = (int*)malloc(sizeof(int));
free(s);
*s = 19;
*r = 17; // EVEN WORSE!! *s may be 17 !?
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Memory Management Rules

• For every run-time call to malloc
– Make sure there is a run-time call to free

• Burn this into your mind!!!
– Avoid dangling pointers
– Avoid memory leaks

• We'll see lots more of this
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Summary

• Defining New Types
– Structs
– Enumerations

• Manual Memory Management
– The Heap
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Reading

• Programming in C
– Chapter 9: Structs
– pp240-244: Pointers and Structures
– Chapter 14: More on Data Types
– pp383-388: Dynamic memory allocation
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Next Time

• A "real" data type
– Linked lists


