
CSE 303 Lecture 10 10/20/2006

1

CSE 303
Concepts and Tools for 
Software Development

Richard C. Davis
UW CSE – 10/20/2006

Lecture 10 – Structs and the Heap

10/20/2006 CSE 303 Lecture 10 2

Administravia

• Optional Exercise for Assignment 3
– Write 4 programs that average numbers

1. Input on command line, all in main
2. Make input come from stdin
3. Move computation into function (static array)
4. Make function take heap allocated array

– Don't turn this in!

10/20/2006 CSE 303 Lecture 10 3

Tip of the Day

• Searching in man pages
– less (used by man)

• To search for word, type /word
• To repeat previous search, type /
• Backspace to quit

– Emacs
• M-x man
• Search as usual

10/20/2006 CSE 303 Lecture 10 4

Last Lecture

• Syntax
– Type names
– Arrays
– Strings

• Command-line Arguments

10/20/2006 CSE 303 Lecture 10 5

Today

• Defining New Types
– Structs
– Enumerations

• Manual Memory Management
– The Heap

10/20/2006 CSE 303 Lecture 10 6

Java Types vs. C Types

• Java
– Define enumeration (Java 5)
– Define class

• C
– Define enumeration
– Define struct



CSE 303 Lecture 10 10/20/2006

2

10/20/2006 CSE 303 Lecture 10 7

Enumerations
• enum defines global integer constants

– Default: first constant has value 0
– Subsequent constants have increasing values
– Values of individual constants can be set

• Enumerations are awful
– No type safety
– No namespace
– No pretty printing

• Examples in enum.c
10/20/2006 CSE 303 Lecture 10 8

C Structs vs. Java Classes

• Similarities
– Both define a named type
– Both have <type, name> pairs

• Differences
– All struct fields "public"
– Structs not automatically grouped w/functions
– Structs can be allocated on the stack

• Don't need "new" (and can't be "null")

• Example in struct.c

10/20/2006 CSE 303 Lecture 10 9

Struct Syntax
• Defining

struct rec {
int t;
char *n;
long x[4];

};
• Declaring

– struct rec r, *pr;
• Accessing

– long var1 = r.t;
– long var2 = pr->t;

• same as long var2 = (*pr).t;

10/20/2006 CSE 303 Lecture 10 10

Structs in Expressions

• Can be locations (left) or values (right) 
– Field: r.t, pr->t
– Whole struct: r, *pr

• Examples
– r.t = pr->t;
– r = (*pr);

•*pr is temporarily allocated on stack, copied to r
– (*pr) = r;

•*pr is location; no temporary allocation

10/20/2006 CSE 303 Lecture 10 11

Typedef creates new type name

• Defining structs with typedef
typedef struct _rec {
int t;
char *n;

} rec;

• Declaring
– rec r, *pr;

• Compare struct.c with structTypedef.c

Optional

10/20/2006 CSE 303 Lecture 10 12

Manual Memory Management

• Up to now, all data has been on the stack
– Allocated when declared
– Reclaimed when function/block ends
– Array size is constant (C90 only)

• Heap allocation
– Allocated with a function call
– Reclaimed with a function call
– Array size determined at run time



CSE 303 Lecture 10 10/20/2006

3

10/20/2006 CSE 303 Lecture 10 13

Remember the Heap?

Stack
(Dynamically Allocated)

Heap
(Dynamically Allocated)

Static Data
(“Data Segment”)

Code
(“Text Segment”)

0xFFFFFFFF

0x00000000

Address Space

10/20/2006 CSE 303 Lecture 10 14

malloc

• Library function: malloc
– Takes a number
– Allocates that many bytes
– Returns a pointer to newly allocated memory

• Behavior
– returns NULL on failure
– Does not initialize the memory

• Great for hackers!

10/20/2006 CSE 303 Lecture 10 15

Using malloc

• Allocating one object
– type *t = (type*)malloc(sizeof(type));

• Allocating an array of objects
– type *t = (type*)malloc(n*sizeof(type));

• Variants
– calloc: allocate arrays and initialize to 0
– realloc: attempts to resize a block

10/20/2006 CSE 303 Lecture 10 16

malloc vs. Java's new

• malloc is missing some functionality
– Fields of structures not initialized
– No automatic call to a constructor

• But both return a pointer/reference!

10/20/2006 CSE 303 Lecture 10 17

Freeing Memory

• Heap allocated objects "live" forever
• Quick way to run out of memory!
• Solutions:

– Java: garbage collector discards unused stuff
– C: Explicitly discard using free

• Forget to free memory?
– "Memory leak"

10/20/2006 CSE 303 Lecture 10 18

Examples
int *p = (int*)malloc(sizeof(int));
p = NULL; //LEAK!!
int *q = (int*)malloc(sizeof(int));
free(q);
free(q); // VERY BAD!!!
int *r = (int*)malloc(sizeof(int));
free(r);
int *s = (int*)malloc(sizeof(int));
free(s);
*s = 19;
*r = 17; // EVEN WORSE!! *s may be 17 !?



CSE 303 Lecture 10 10/20/2006

4

10/20/2006 CSE 303 Lecture 10 19

Memory Management Rules

• For every run-time call to malloc
– Make sure there is a run-time call to free

• Burn this into your mind!!!
– Avoid dangling pointers
– Avoid memory leaks

• We'll see lots more of this

10/20/2006 CSE 303 Lecture 10 20

Summary

• Defining New Types
– Structs
– Enumerations

• Manual Memory Management
– The Heap

10/20/2006 CSE 303 Lecture 10 21

Reading

• Programming in C
– Chapter 9: Structs
– pp240-244: Pointers and Structures
– Chapter 14: More on Data Types
– pp383-388: Dynamic memory allocation

10/20/2006 CSE 303 Lecture 10 22

Next Time

• A "real" data type
– Linked lists


