
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 4— Shell Variables, More Shell Scripts

Dan Grossman CSE303 Spring 2005, Lecture 4 1

'

&

$

%

Where are We

We understand almost all of the C-shell and its “programming

language”.

Final pieces:

• Shell variables

• Environment variables

• More programming constructs

– Loops

– Word lists

Dan Grossman CSE303 Spring 2005, Lecture 4 2

'

&

$

%

Shell variables

We already know a shell has state: current working directory, users,

aliases, history.

Its state also includes shell variables and environment variables.

Features:

1. Change variables’ values

2. Add new variables

3. Remove variables

4. See if a variable exists

5. Variables “set” but without values

Nonfeature: Local variables

Only (1) is similar to “real” programming languages

Dan Grossman CSE303 Spring 2005, Lecture 4 3

'

&

$

%

Variables

set

set i = 17

set

echo $i

set | grep i

set i

echo $i

unset i

echo $i

Dan Grossman CSE303 Spring 2005, Lecture 4 4

'

&

$

%

Word Lists

Finally, there is something sorta like an array, but more flexible.

With a word lists, you can use the whole lists, extract ranges, extract

individual words, etc.

Generalizing an earlier concept: argv is just a variable set to a wordlist

and $i is just shorthand for $argv[i].

Dan Grossman CSE303 Spring 2005, Lecture 4 5

'

&

$

%

Two Essential Variables

There are two predefined shell variables we have been using on every

line of every shell interaction:

• path

– How the shell finds what program to run

– The first thing to check when a command does not do what

you think

– The which built-in

• prompt

– Have fun specializing yours

– Not set in scripts, so $?prompt is 0 iff the current shell is

noninteractive.

Another you have seen me use: history

Dan Grossman CSE303 Spring 2005, Lecture 4 6

'

&

$

%

Examples

• make thumb using a variable to hold the outfile

• makenfiles using a variable for a loop

• limittmp using a variable to hold a temp-file name

• mypushd, mypopd, mydirs via aliases and a shared variable

Dan Grossman CSE303 Spring 2005, Lecture 4 7

'

&

$

%

Quoting and Variables

• Normal expansions will happen before setting a variable unless you

quote.

• Variables get expanded inside double-quotes

• Variables do not get expanded inside single-quotes

• Variables get expanded and then filename metachars get expanded

For our mystack aliases, single quotes were crucial.

Dan Grossman CSE303 Spring 2005, Lecture 4 8

'

&

$

%

Environment Variables

Remember that scripts run in their own shell.

• They get environment variables from their “parent shell”.

• They can set them, but parent will not see the effect.

– Child shells will.

Most useful thing:

• shell var path initialized to environment variable $PATH.

• So set PATH when you log in and every shell will see it.

Note syntax for setenv is different than for set (sigh).

Dan Grossman CSE303 Spring 2005, Lecture 4 9

'

&

$

%

Shell Programming Revisited

How do Java programming and C-shell programming compare?

The shell:

• “shorter”

• convenient file-access, program-execution, pipes

• crazy quoting rules and syntax

• also interactive

Java:

• local variables, modularity, typechecking

• real data structures, libraries, regular syntax

Rule of thumb: Don’t write shell scripts over 100 lines?

Dan Grossman CSE303 Spring 2005, Lecture 4 10

'

&

$

%

More on Shell Programming

Metapoint: Computer scientists automate and end up accidentally

inventing (bad) programming languages. It’s like using a screwdriver

as a pry bar.

HW2 in part, will be at the limits of what one should do with a shell

script (and we’ll end up cutting corners as a result)

There are plenty of attempts to get “the best of both worlds” in a

scripting language: Perl, Python, Ruby, ...

Personal opinion: it raises the limit to 1000 or 10000 lines? Get you

hooked on short programs.

Picking the C-shell was a conscious decision to emphasize the

interactive side and “how bad programming can get”.

Next: Regular expressions, grep, sed, find.

Dan Grossman CSE303 Spring 2005, Lecture 4 11

