
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 28— Concurrency, Threads

Dan Grossman CSE303 Spring 2005, Lecture 28 1

'

&

$

%

You have grading to do

I am going to distribute course evaluation forms so you may rate the quality

of this course. Your participation is voluntary, and you may omit specific

items if you wish. To ensure confidentiality, do not write your name on the

forms. There is a possibility your handwriting on the yellow written

comment sheet will be recognizable; however, I will not see the results of this

evaluation until after the quarter is over and you have received your grades.

Please be sure to use a No. 2 PENCIL ONLY on the scannable form.

I have chosen (name) to distribute and collect the forms. When you are

finished, he/she will collect the forms, put them into an envelope and mail

them to the Office of Educational Assessment. If there are no questions, I

will leave the room and not return until all the questionnaires have been

finished and collected. Thank you for your participation.

I’ll come back at 2:47. Please remember the back.

Dan Grossman CSE303 Spring 2005, Lecture 28 2

'

&

$

%

Our Model

So far, a process (a running program) has:

• a stack

• a heap

• code

• global variables

Other processes have a separate address space. The O/S takes turns

running processes on one or more processors.

Interprocess communication happens via the file system, pipes, and

things we don’t know about.

Dan Grossman CSE303 Spring 2005, Lecture 28 3

'

&

$

%

Inter-process races

Forgetting about other processes can lead to programming mistakes:

echo "hi" > someFile

set foo = ‘cat someFile‘

assume foo holds the string hi??

A race condition is when this might occur.

Processes sharing resources must synchronize; no time today to show

you how.

But enough about processes; we’ll focus on intra-process threads

instead and how you use locks in Java.

Dan Grossman CSE303 Spring 2005, Lecture 28 4

'

&

$

%

“Lightweight” Threads

One process can have multiple threads!

Each thread has its own stack.

A scheduler runs threads one-or-more at a time.

The difference from multiple processes is the threads share an address

space – same heap, same globals.

“Lightweight” because it’s easier for threads to communicate (just

read/write to shared data).

But easier to communicate means easier to mess each other up.

(Also there are tough implementation issues about where to put

multiple stacks.)

Dan Grossman CSE303 Spring 2005, Lecture 28 5

'

&

$

%

Shared Memory

Now races can happen if two threads could access the same memory

at the same time, and at least one access is a write.

class A { String s; }

class C {

private A a;

void m1() {

if(a != null) // "dangerous" race

a.s = "hi";

}

void m2() { a = null; }

...

}

If you naively try to code away races, you will just add other races!!!

Dan Grossman CSE303 Spring 2005, Lecture 28 6

'

&

$

%

Concurrency primitives

Different languages/libraries for multithreading provide different

features, but here are the basics you can expect these days:

• A way to create a new thread

– See the run method of Java’s Thread class.

• Locks (a way to acquire and release them).

– A lock is available or held by a thread.

– Acquiring a lock makes the acquiring thread hold it, but the

acquisition blocks (does not continue!) until the lock is

available.

– Releasing a lock makes the lock available.

– Advanced note: Java locks are reentrant: reacquisition doesn’t

block, instead increments a hidden counter that release

decrements...

Dan Grossman CSE303 Spring 2005, Lecture 28 7

'

&

$

%

Locks in Java

Java makes every object a lock and combines acquire/release into one

language construct:

syncrhonized (e) { s }

• Evaluate e to an object.

• “Acquire” the object (blocking until available).

• Execute s.

• Release the lock. The implementation of locks ensures no races on

acquiring and releasing.

Dan Grossman CSE303 Spring 2005, Lecture 28 8

'

&

$

%

Fixing our example

If a C object might have m1 and m2 called simultaneously, then both

must guard their access to a with the same lock.

class C {

private A a;

void m1() {

synchronized (this) {

if(a != null) // "dangerous" race

a.s = "hi";

}

}

void m2() { synchronized (this) { a = null; } }

}

Note: There is more convenient syntax for this.

Note: What if a is public and/or there are subclasses.

Dan Grossman CSE303 Spring 2005, Lecture 28 9

'

&

$

%

Rules of Thumb

Any one of the following are sufficient for avoiding races:

• Keep data thread-local (an object is reachable, or at least only

accessed by, one thread).

• Keep data read-only (do not assign to object fields after an

object’s constructor)

• Use locks consistently (all accesses to an object are made while

holding a particular lock)

These are tough invariants to get right, but that’s the price of

multithreaded programming today.

Dan Grossman CSE303 Spring 2005, Lecture 28 10

'

&

$

%

Deadlock

Object a;

Object b;

void m1() { void m2() {

synchronized a { synchronized b {

synchronized b { synchronized a {

... ...

}} }}

}

A cycle of threads waiting on locks means none will ever run again!

Avoidance: All code acquires locks in the same order (very hard to

do). Ad hoc: Don’t hold onto locks too long or while calling into

unknown code.

Dan Grossman CSE303 Spring 2005, Lecture 28 11

'

&

$

%

Summary

Multithreaded programming is harder:

• there are multiple stacks in one address space

• there are potential races and deadlocks

Locks are a useful concept: only one thread holds a lock at a time.

There are other useful concepts; see CSE451 or come talk to me.

Why have threads?

• Performance

• Structure of certain code (e.g., event-handling)

• Robustness of certain code (e.g., thread-failure 6= program-failure)

Example you have seen but which mostly hides threads: Java

EventListeners

Dan Grossman CSE303 Spring 2005, Lecture 28 12

