
'

&

$

%

CSE 303:
Concepts and Tools for Software Development

Dan Grossman

Spring 2005

Lecture 13— C: post-overview, function pointers, coding up objects

Dan Grossman CSE303 Spring 2005, Lecture 13 1



'

&

$

%

Where are We

“Official Notice”:

• Homework 4 will be posted today, due a week from Thursday

• Midterm Friday, “first page” will be posted today or tomorrow

– Covers through today

• Homework 2 will be available tomorrow (thanks Ben!)

Today:

• Top-down view of C

• Function pointers

• Coding up objects (more later?)

Dan Grossman CSE303 Spring 2005, Lecture 13 2



'

&

$

%

Top-down post-overview

Now that we have seen most of C, let’s summarize/organize:

• Preprocessing

– #include for declarations defined elsewhere

– #ifdef for conditional compilation

– #define for token-based textual substitution

• Compiling (type-checking and code-generating)

– A sequence of declarations

– Each C file becomes a .o file

• Linking

– Take .o and .a files and make a program

– libc.a in by default, has printf, malloc, ...

– More later

Dan Grossman CSE303 Spring 2005, Lecture 13 3



'

&

$

%

• Executing

– O/S maintains the “big array” address-space illusion

– Execution starts at main

– Library manages the heap via malloc/free.

Dan Grossman CSE303 Spring 2005, Lecture 13 4



'

&

$

%

C, the language

• A file is a sequence of declarations:

– Global variables (t x; or t x = e;)

– struct (and union and enum definitions)

– Function prototypes (t f(t1,...,tn))

– Function definitions

– typedefs

• A function body is a statement

– Statements are similar to in Java (+ goto, –

exception-handling, ints for bools)

– Local declarations have local scope.

• Left-expressions (locations) and right-expressions (values,

including pointers-to-locations)

– * for pointer dereference, & for address-of, . for field access

Dan Grossman CSE303 Spring 2005, Lecture 13 5



'

&

$

%

C language continued

“Convenient” expression forms:

• e->f means (*e).f

• e1[e2] means *(e1 + e2)

– But + for pointer arithmetic takes the size of the pointed to

element into account!

– That is, if e1 has type t* and e2 has type int, then , then

(e1 + c) == (((int)e1) + (sizeof(t) * c))

– The compiler “does the sizeof for you” – don’t double-do it!

“Size is exposed”: In Java, “(just about) everything is 32 bits”. In C,

pointers are usually the same size as other pointers, but not everything

is a pointer.

Dan Grossman CSE303 Spring 2005, Lecture 13 6



'

&

$

%

C is unsafe

The following is allowed to set your computer on fire:

array-bounds violation (bad pointer arithmetic), dangling-pointer

dereferences, dereferencing NULL, using results of wrong casts, using

contents of uninitialized locations, linking errors (inconsistent

assumptions), ...

Casts are not checked (no secret fields at run-time; all bits look the

same)

Dan Grossman CSE303 Spring 2005, Lecture 13 7



'

&

$

%

Function pointers

“Pointers to code” are almost as useful as “pointers to data”.

(But the syntax is more painful.)

(Somewhat silly) example:

void app_arr(int len, int * arr, int (*f)(int)) {

for(; len > 0; --len)

arr[len-1] = (*f)(arr[len-1]);

}

int twoX(int i) { return 2*i; }

int sq(int i) { return i*i; }

void twoXarr(int len, int* arr) { app_arr(len,arr,&twoX); }

void sq_arr(int len, int* arr) { app_arr(len,arr,&sq); }

CSE 341 spends a week on why function pointers are so useful; today

is mostly just how in C.

Dan Grossman CSE303 Spring 2005, Lecture 13 8



'

&

$

%

Function pointers, cont’d

Key computer-science idea: You can pass what code to execute as an

argument, just like you pass what data to process as an argument.

Java: An object is (a pointer to) code and data, so you’re doing both

all the time.

// Java

interface I { int m(int i); }

void f(int arr[], I obj) {

for(int len=arr.length; len > 0; --len)

arr[len-1] = obj.m(arr[len-1]);

}

C separates the concepts of code, data, and pointers.

Dan Grossman CSE303 Spring 2005, Lecture 13 9



'

&

$

%

C function-pointer syntax

C syntax: painful and confusing. Rough idea: The compiler “knows”

what is code and what is a pointer to code, so you can write less than

we did on the last slide:

arr[len-1] = (*f)(arr[len-1]);

→ arr[len-1] = f(arr[len-1]);

app_arr(len,arr,&twoX);

→ app_arr(len,arr,twoX);

For types, let’s pretend you always have to write the “pointer to code”

part (i.e., t0 (*)(t1,t2,...,tn)) and for declarations the variable

or field name goes after the *.

Sigh.

Dan Grossman CSE303 Spring 2005, Lecture 13 10



'

&

$

%

Toward objects

If you want a pointer to code and data, like in Java, then DIY:

struct MyPoint {

// data

int x;

int y;

// code

int (*getX)(struct MyPoint*);

void (*setX)(struct MyPoint*,int);

int (*getY)(struct MyPoint*);

void (*setY)(struct MyPoint*,int);

double (*distance2origin)(struct MyPoint*);

};

“extra argument” is Java’s this, else code has no access to the other

(data and code) fields.

When this “coding pattern” became common, C++ was born (sorta).

Dan Grossman CSE303 Spring 2005, Lecture 13 11



'

&

$

%

A much bigger story

We have just scratched the surface of “C-level OOP”.

Food for thought (not on the exam!):

• How could a subclass override methods, add methods, or add

fields? (you need casts in a couple different places!)

• What is the difference between calling this->getX and calling

MyPoint_getX?

• Aren’t struct MyPoint objects awfully large – how could we

save space?

Dan Grossman CSE303 Spring 2005, Lecture 13 12


