
CSE 303, Spring 2005, Assignment 7
Due: Friday 3 June, 9:00AM

Last updated: May 24

Summary: You will develop a CGI program providing a web interface to your solution to homework 6.
Your program will use your homework 6 solution, a small Java program for processing inputs, and basic
Linux utility programs. The course website provides a mostly-complete solution; you need to add some
functionality and change some behavior, as described below.

Remember that the department allows CGI programs only on the machine abstract (in the www subdi-
rectory of your abstract home directory) and that your attu home directory is (thankfully) not available
from this machine. You will need to transfer files to abstract.

1. HTML

(a) Copy the HTML source in
http://abstract.cs.washington.edu/~djg/303hw7.html to
http://abstract.cs.washington.edu/~userid/303hw7.html where userid is your userid.

(b) Change your copy of 303hw7.html so that the phrase “CSE303 Spring 2005” is hyperlinked to
the course homepage.

(c) Change 303hw7.html so that the words in the phrase can have up to 35 characters instead of 30.
Change the text to indicate the change.

2. Java

(a) Copy the file hw7.java from the course web-site. It expects a query-string as its one and only
command-line argument. It allows the form fields to appear in any order. (You can use your
HTML file to see what the input string looks like; it’s the part after the ? in the URL.)

(b) Change the method check_string so that it returns true if and only if its argument contains
only English letters and hyphens.

(c) Change the method main so that the program prints a b c d where a is the name of the file to be
processed and b c d is the phrase to look for. If there is any problem with the input, it should
output nothing. The lines you need to change are indicated in the file. In particular you need to:

• Set the names array to hold the correct “field names” for processing the input.
• Assign starts[4] so that the following loop works correctly.
• Add code to check if all 4 outputs (referred to above as a, b, c, d) were correctly figured out.
• Add code that prints out the 4 outputs.

3. C-Shell

(a) Copy the file hw7.cgi from the course web-site.

(b) Change hw7.cgi so that it sets the variable myargs to the standard out produced by calling your
Java program with the contents of the environment variable $QUERY_STRING.

(c) Change hw7.cgi so that the first argument to ./phrase_chance is a filename for a file in the
directory ~djg/www. For example, instead of passing the argument swanh, you want to pass
~djg/www/swanh. (At this point, your program “should work”.)

(d) Change hw7.cgi so the first line of output includes the first-line of the input-file in quotation
marks instead of the input-file’s name. For example, instead of Text: swanh, output

Text: " STAR WARS Episode IV A NEW HOPE "

Hint: man head.

(e) Change your copy of hw7.cgi so that the HTML it produces includes a link back to your
303hw7.html.

1

Extra Credit 1: Add a second form to your web page. The form should take one word instead of 3 and
use your solution to homework 6 to compute how many times that word appears in the document.

• The only programs you may use to process the input file are wc and phrase_chance.

• Here’s the trick: If the word is w and the total number of words in the file is n, then the answer is
(m · n3)1/3 where m is the one-word model prediction of seeing the phrase w w w.

• Write new C-Shell and Java files as necessary. (Turn in a tarball with them all.)

• Round the floating-point result to the nearest integer.

Extra Credit 2: Turn in code for a third application phrase_chance_extra2. Add a third form to your
web page. The form should replace the radio buttons with a text box accepting up to 30,000 characters.
You should treat the contents of this text box as the input file for phrase_chance. Be sure not to leave
around any temporary files you might create.

• You may want to use the “post” method of running CGI programs.

• Write new C-Shell and Java files as necessary. (Turn in a tarball with them all.)

Permissions and Academic Integrity: As usual, you should make your solutions unreadable by other
users and may not look at others’ solutions even if they set their permissions incorrectly. However, this
policy will not work for the HTML file because the whole point is to make it available to the world. So it’s
worth emphasizing that even though every student’s 303hw7.html file will be available, you may not look
at another student’s HTML source.

Turn-in Instructions:

• Turn in your HTML, CGI, and Java files using the link on the course webpage. You do not need to
turn in the source code for Homework 6.

• Make sure your program is publicly accessible on the web via
http://abstract.cs.washington.edu/~userid/303hw7.html where userid is your userid.

2

