
CSE 303, Spring 2005, Assignment 4
Due: Thursday 5 May, 9:00AM

Last updated: April 25

Summary: You will complete a C program that processes a file of “friends” and prints out each person’s
friends. Your implementation must use the code provided on the course website. There are also other
requirements for your implementation. The sample solution is 99 lines.

Behavior Specification:

1. The program takes one argument, the name of a file with the input.

2. The program may assume the input file is correctly formatted, as described here.

• The input file will have only non-blank text lines that end with a newline (’\n’) character, i.e.,
UNIX-style line-endings.

• Each line will have a sequence of one or more full-names. A full-name is a string with exactly
one space character (’ ’) in the middle. An example is “Dan Grossman” (without the quotes).
Before the first full-name and after the last full-name there can be any number of space characters.
Between full-names there can be any non-zero number of space characters.

3. The input file describes “friendships”:

• A line with one full-name means nothing.

• A line with more than one full-name means the first person is friends with all the other people
and all the other people are friends with the first person.

• There can be redundant information (repeated friendships) on one line and/or different lines.

4. The output file describes “friendships” in a different format than the input:

• For every name x y in the input file, there is one line in the output file, beginning with x y: and
followed by a space-separated list of that person’s friends.

• The lists of friends on each line must be accurate and not have any names repeated.

• Any order of names and their friends is acceptable.

5. Example: If the input is

Dan Grossman Wayne Gretzky Mario Limieux
George Bush John Kerry
John Kerry Dan Grossman Dan Grossman
a b c d e f

then one correct output is

e f: a b
c d: a b
a b: e f c d
John Kerry: Dan Grossman George Bush
George Bush: John Kerry
Mario Limieux: Dan Grossman
Wayne Gretzky: Dan Grossman
Dan Grossman: John Kerry Mario Limieux Wayne Gretzky

1



Implementation Specification:

1. Compile with gcc -Wall -o hw4 hw4.c share_string.c where the C files and share_string.h are
provided to you. (The provided hw4.c will not compile until you edit it.)

2. Change only hw4.c and do not change any of the code already in this file. That is, only add code and
do not change the function bodies already provided.

3. You must use the library provided by share_string.c for creating “names” that you will store in a
data structure that keeps track of friends. You can compare strings returned from find_word with
pointer-equality (==); do not compare such strings’ contents.

4. Do not use unnecessary space. In particular, for each “person” you should only ever make one struct
describing that person. (The next section explains how to do this.)

Algorithm Overview (i.e., “how to do it”):

1. Define three structs. Because you cannot change print friends, you have little choice in the defi-
nitions. A “people list” is a linked-list of “persons”. A “person” is a “name” and a “friend list”. A
“name” is just a string returned by find word. A “friend list” is a linked list of “persons”.

2. As you process the input, maintain a people lst t that holds all the people and friends you have seen
so far, without having any repeats. These functions will help:

• add person takes a pointer to your “people list” and a name, and returns the “person” for that
name. If the pointed to “people list” already has a person with the name, it returns that person,
else it creates a longer “people list” (use malloc) with a new “person” and returns the new
“person”. (Sample solution: 11 lines) Note: The function is somewhat misnamed since it also
“finds” a person already in the “people list”.

• add friend takes a “people list”, a “person”, and a “name” and returns nothing. If the person is
already friends with the name, it does nothing. If necessary, it adds a new person (see above) for
the name. It then adds the person with the name to the argument person’s friend list. (Sample
solution: 10 lines.)

• get name begin takes and returns a char*. If the argument string has only (zero or more) space
characters before a ’\n’, it returns NULL. Else it returns a pointer to the first character in the
string that is not ’ ’. That is, if the argument starts with n spaces, then the function returns its
argument plus n. (Sample solution: 7 lines.)

• get name end takes and returns a char*. It assumes a full-name is at the beginning of the string
it is passed. It returns a pointer to the position in the string just after the next full-name. That
is, there is memory between where the argument points and the result points (not including where
the result points). This memory contains some number of non-space characters, then exactly one
’ ’ and then as many non-space (and non-newline) characters as possible.

3. Have get friends create a word-cache (using the code in share strings) and space for the “people
list” result (initially NULL). Use getline (see homework 3) to read each line of the input file. For
each line, get the first name (using get name begin, get name end, and find word) and (potentially)
update the “people list” with add person. Then for each additional name on the line, get the name
(similar to how you got the first name) and call add friend twice. Note that to find the beginning of
the next name, you should start where the previous name ended. (Sample solution: 26 lines, including
code to free the word-cache and the buffer used to hold input lines. It’s okay if you don’t do this, but
you will have a (small and short-lived) space leak.)

Advice: Understand the basic idea of the algorithm before you write too much code. Pictures may be a
big help. For add person and add friend, remember that find word allows you to compare names with
pointer equality. This assignment is hard; start early and debug as you go.

2



Extra Credit: Write a version of the program hw4 ec.c that also computes and outputs the data’s “degree
of separation”. The degree of separation is the least n such that you can get between any two people with
at most n− 1 intermediate friends (as in “a is friends with b and b is friends with c and ...”. If there is one
person, the degree of separation is 0. If everyone is friends with everyone, the degree of separation is 1. If
there are two (or more) people that cannot be connected via any number of friends, the degree is “infinity”.

The key to computing the degree efficiently is boolean matrix multiplication! Assign each person a number
and build a matrix A where A[i, j] is 1 if i == j or i and j are friends, and 0 otherwise. Multiplication is
“boolean and” – x times y is 1 if x and y are 1 and 0 otherwise. Addition is “boolean or” – x plus y is 1 if
x or y is 1 and 0 otherwise.

Build a second matrix B initialized to A. If after setting B equal to AB (i.e., matrix multiplication of A
and B) n times B has no 1 entries, then the degree of separation is n+1 (assuming after n−1 iterations there
were 1 entries). If at some point B and AB are the same and there are 1 entries, the degree of separation is
infinite.

Print out one additional line of the form “Degree of separation: n” where n is the degree of separation.
Warning: The sample solution did not do the extra credit. The algorithm above may have unintentional

errors.

Assessment: Your solutions should be:

• Correct C programs that compile without warnings using gcc -Wall.

• In good style, including indentation and line breaks

• Of reasonable size

Turn-in Instructions: Follow the link on the course website and follow the instructions there.

3


