Programming for
Correctness

CSE 490c -- Craig Chambers

Goal: correct programs

n What is correct, anyway?
n Now: defining correct behavior
» Later: finding out what users really want

» How to ensure this?

» How to make programs more likely to be
correct?

» How to keep them correct as they evolve?

CSE 490c -- Craig Chambers 2

Specifications

n A specification describes what a
method/class/... is supposed to do
n (Some) goals:
n Precise
» Complete
» Understandable by people
» Checkable by machines
n Hard to meet all these goals

CSE 490c -- Craig Chambers

Pre-/post-conditions

n One way to think about a method's
specification is by a pair of
» A precondition: what the method assumesis true

when it starts

» E.g. what values its arguments are allowed to have
» A postcondition: what the method guarantees is

true when it returns
» E.g. what the value it returns will be
» Under the assumption that its precondition is met!

CSE 490c -- Craig Chambers 4

Examples

n double sqgrt(double x):
" pre:x>=0
n post:
o result * result = x
. result >=0
n void sort(int[] values):
n pre: values !'= null

» post: forall i, j in [0..values.length):
if i < j then values[i] <= values[j]
« (or, post: values is sorted in non-decreasing order)

CSE 490c -- Craig Chambers

Who's responsible?

n Preconditions are the responsibility of
the caller
» The callee method can assume they're true
on entry
n Postconditions are the responsibility of
the callee

» The caller can assume they're true when
the call returns

CSE 490c -- Craig Chambers 6

Fail-soft vs. fail-stop

n What happens if there's a bug in the
program, and a pre- or post-condition isnt
satisfied?

» Things might still work, sort of
» Eventually things might fail, but often in a bizarre
way
« Particularly true in "unsafe" languages like C, where
violating a specification could cause unrelated memory to
get corrupted

» Would like a cleaner failure, the moment the

violation happens

CSE 490c -- Craig Chambers 7

Enforcement

n Can use various language and
programming techniques to check pre-
and post-conditions

~ Typically assume each pre- and post-
condition is a regular boolean expression

n Some languages have support for pre-
and post-conditions built-in
» Checked automatically on entry & exit

n Others support assertions

CSE 490c -- Craig Chambers 8

Assertions

n An assertion is a boolean expression at a
given point in the program that's checked at
run-time

» The expression should be true
» If it's not, then the assertion has failed, and some
sort of fatal error should be reported

n Precondition = an assertion on entry to the
method

n Postcondition = an assertion at every return
point of the method

» What about exception throws?

CSE 490c -- Craig Chambers 9

Assertions in Java

n Java 1.4 has built-in support for
assertions
n A new kind of statement:
assert booleanExpr: errorMsg ;
n Semantics:
~ Evaluate booleanExpr
~ If it's true, OK

~ If it's false, throw an Asserti onError,
which if unhandled will print out errorMsg

CSE 490c -- Craig Chambers 10

Example

public void sort(int[] values) {
assert values !'= null : "null argument”;
/| the sorting algorithm here
assert isSorted(values) : "sort broke!";
¥
private boolean isSorted(int[] values) {
/] return whether values is sorted

}

CSE 490c -- Craig Chambers 11

Compiling & running with
assertions

n To enable the assert statement, must
invoke j avac with the —source 1.4
option
n javac —source 1.4 Main.java ..

n To run with assertion checking turned
on, must invoke j ava with the —ea
("enable assertions") flag
njava —ea Main ..

CSE 490c -- Craig Chambers 12

Disabling assertion checking

n Assertion checking can be expensive

n Often, assertion checking can be
enabled or disabled, either at compile-
time or at run-time

» Can have lots of assertions enabled during
debugging, fewer during "normal"
execution

» Can sometimes choose which class of
assertions to enable, based on what part of
the system needs extra checking

CSE 490c -- Craig Chambers 13

Assertions vs. error checking

n Don't use assertions to do regular error
checking that should always be present
~ E.g. checking whether user input is OK

n Your program should still work, and do
all necessary error checking, with
assertions disabled

Specified errors

n A public library method often specifies what it

does in all cases, /including "error” cases
» E.g., what exceptions are thrown for which kinds
of "bad" inputs

n These error cases are not precondition
assumptions, but are postcondition
guarantees

» Don't use assertions for them!

n Good style for public library methods to have
no preconditions, but instead to specify a
response (e.g. an exception) for all possible
inputs

CSE 490c -- Craig Chambers 15

CSE 490c -- Craig Chambers 14
Example
n double sqrt(double x):
n post:
" if x >=0:
n result * result = x
n result >=0
» otherwise:

» throws IllegalArgumentException

CSE 490c -- Craig Chambers 16

Invariants

n A very useful kind of "specification" is
an invariant

» Something that is always true about some
part of the software

n A great mental tool in thinking about
the correctness of complex algorithms &
data structures

n A great debugging tool, also

CSE 490c -- Craig Chambers 17

Simple invariants

n One kind of invariant is something
that's true at some point in the program
~ If it's not true, then something broke

n An assertion is great for making such
invariants explicit

» E.g. in the middle of the sorting loop, all
values in the array at indexes <= i have
been sorted

A loop invariant

CSE 490c -- Craig Chambers 18

Class invariants

n A class invariant is true about the state of
each instance of the class
» Established by the constructor

n Preserved by all public methods

» Can be temporarily violated in the middle of a
modification

n E.g., that a binary search tree is always
properly sorted

n Can be viewed as implicit postconditions of all
constructors and public methods

CSE 490c -- Craig Chambers 19

Formality

n These pre- & post-conditions are pretty
formal
» Makes them precise, processable by machine
n Mostly clear to humans, for these examples
n As functions get more complex, it's
increasingly hard to be formal
» Specifications get very long & involved
n They become less readable by humans
n Informal specifications, even partial
specifications, are better than no
specifications!

CSE 490c -- Craig Chambers 20

Documentation

n The documentation is the main "specification"
most people use
» The more precise, the better

n Several tools can derive documentation from
source code
» E.g. j avadoc, which produces web pages

. Looks for special /** ... */ comments

» Documentation in source code is less likely to

be out of date

» But anything that's not machine-checked can get
out of date L

CSE 490c -- Craig Chambers 21

Literate programming

n Literate programming. code is just a
part of an enclosing document
» The document is primary, not the code

~ Like any technical document, can have
examples, diagrams, references, etc.

» Encourages good explanations,
documentation

n See e.g. noweb

CSE 490c -- Craig Chambers 22

