A pattern: Visitor

= Motivation:

= Have a hierarchy of classes
» E.g. different kinds of queries, or query results

= Want to add operations to them
» E.g. translating each kind of query to string, or printing

out queries, or evaluating queries, or ...
= But can't (or don't want to) modify the classes to
add the operations

» E.g. don't have source access, or don't want to pollute a
shared class library with application-specific operations

CSE 490c -- Craig Chambers 270

Participants (class library)

abstract class Thing {

abstract void Accept(Visitor v);
}
class A extends Thing {

void Accept(Visitor v) { v.VisitA(this); }
}
class B extends Thing {

void Accept(Visitor v) { v.VisitB(this); }
}

CSE 490c -- Craig Chambers 271

Participants (visitors)

abstract class Visitor {
abstract void VisitA(A a);
abstract void VisitB(B b);

}

class MyVisitor extends Visitor {
void VisitA(Aa) { ... }
void VisitB(B b) { ... }

}

CSE 490c -- Craig Chambers 272

Some examples

= Queries: printing, translating for back-
end

= Results: printing, displaying

CSE 490c -- Craig Chambers 273

Benefits

= Allows extending class hierarchies with
new operations

= Groups methods of a single operation in
one place

= Can inherit code from one visitor class
to another

CSE 490c -- Craig Chambers 274

Liabilities

= Obstructs adding new subclasses of
library classes
= Can't get your cake and eat it too

= Arguments & results of all operations
have to be the same

= Can't access private stuff from visitor
= Must plan ahead a little
= Somewhat tedious to program

CSE 490c -- Craig Chambers 275




An alternative:
external methods in MultiJava!

... Thing.MyOperation(...) {
... // default behavior of MyOperation
}
... A.MyOperation(...) {
... /] behavior for A's
}
... B.MyOperation(...) {
... /] behavior for B's

by

CSE 490c -- Craig Chambers 276

Benefits of external methods

= Easy to add new operations to existing
classes

= Also groups related methods together
= No need to plan ahead for visitation

= Each operation can have its own
argument and result types

= No obstruction of subclassing

CSE 490c -- Craig Chambers 277

Liabilities of external methods

= Need a language extension

= No inheritance from one "visitor" to
another

= Still can't access private stuff

= Some restrictions imposed to ensure
modular safety & compilability
= S0 use Relaxed MultiJava!

CSE 490c -- Craig Chambers 278

A pattern: Abstract Factory

= Motivation: want to decouple a client
that creates objects from exactly what
class is created
= Allow changing what class is created
without modifying the instantiating clients

= Allow parameterizing clients by different
implementations of some abstract
interfaces (e.g. GUI elements)

= "Virtual constructors"

CSE 490c -- Craig Chambers 279

Participants (items)

interface A{ ... }
interface B{ ... }

class MyAl implements A{ ... }
class MyB1 implements B { ... }

class YourA2 implements A { ... }
class YourB2 implements B { ... }

CSE 490c -- Craig Chambers 280

Participants (factories)

abstract class AbstractFactory {
abstract A createA(...);
abstract B createB(...); ... }
class MyFactory1 extends AbstractFactory {
A createA(...) { return new MyA1(...); }
B createB(...) { return new MyB1(...); } ... }
class YourFactory2 extends AbstractFactory {
A createA(...) { return new YourA2(...); }
B createB(...) { return new YourB2(...); } ... }

CSE 490c -- Craig Chambers 281




Participants (clients)

class Client {
private AbstractFactory factory;
public Client(..., AbstractFactory f) {
.. factory =f; }

A anA = factory.createA(...);
B aB = factory.createB(...);
)
Client ¢ = new Client(..., new MyFactory1());
// or new Client(..., new YourFactory2());

CSE 490c -- Craig Chambers 282

Some examples

= Changing visual "look and feel" of query
objects
= Without rewriting clients

= Replacing original classes with
enhanced or adapted subclasses
= Without rewriting clients

CSE 490c -- Craig Chambers 283

Benefits

= Can swap different implementations of
interface without affecting clients

CSE 490c -- Craig Chambers 284

Liabilities

= More cumbersome creation protocol

= Clients must not invoke regular
constructors
= How to protect them?

= Obstructs adding new kinds of items to
be created

= Analogous to visitor limitations
» Analogous MultiJava solution?

CSE 490c -- Craig Chambers 285

More design patterns

= Singleton: classes with a single instance

= Prototype: create objects by copying
prototypical instances

= Proxy: a forwarding object

= Chain of Responsibility: a sequence of objects
that might handle operations

» Strategy: interchangeable algorithms
= State: (appear to) change an object's class

= Mediator: a coordinator object that knows
how other objects should interact

CSE 490c -- Craig Chambers 286




