Design Patterns

CSE 490c -- Craig Chambers 246

Design at different scales

= Design of individual classes is "easy"
» Identify the class's operations
» Specify, implement, and test them
= Design of whole application is hard
» "Software architecture”
» Very application-specific
= In between: design of coordinated groups of
classes
= Some commonly occurring design patterns

CSE 490c -- Craig Chambers 247

Design patterns

Benefits of design patterns

= Identify a standard programming goal
= "Want to be able to change GUI without affecting
main code"
= Describe a way of designing a few
interrelated classes to achieve the goal

= "Have a subject class separate from an observer
class, with the following operations..."

= Point out trade-offs

= "Good when simple protocol between subject and
observer, not so good otherwise"

CSE 490c -- Craig Chambers 248

= Pass on "standard wisdom" from
experienced to novice designers
= What are some good solutions
= What are their strengths and weaknesses

= What to look for to decide which pattern to
choose

= Give names to standard patterns, to
ease communication

CSE 490c -- Craig Chambers 249

A pattern: Observer

Subject participant

= Motivation: achieve loose coupling
between data and its external views
= data = "subject" (aka model, publisher)
= view = "observer" (aka subscriber)

= Any number of observers of model

= Observers notified when model
changes, without model having to
know (statically) about the observers

CSE 490c -- Craig Chambers 250

abstract class Subject {
private List<Observer> observers;
void Attach(Observer 0) {
add o to observers; }
void Notify() {
foreach o in observers: o.Update(); }
}
class SomeConcreteSubject extends Subject {
store data, invoke Notify() when changed
}

CSE 490c -- Craig Chambers 251




Observer participant

abstract class Observer {
private Subject subject;
void Update();
}
class SomeConcObserver extends Observer {
display view of subject;
update view when Update called;

by

CSE 490c -- Craig Chambers 252

Applicability

= When an abstraction has two aspects,
one dependent on the other

= When a change in one object requires
changing others, but you don't know
how others need to be changed

= When an object should be able to notify
other objects without knowing who
those objects are

CSE 490c -- Craig Chambers 253

Example: DB system

= What are the subjects & observers in
the GUI interface to a generic DB
system?
= When might there be multiple observer
cdlasses of a single subject class?

= What advantages to separating subject
from observer classes?

CSE 490c -- Craig Chambers 254

Benefits: modularity & reuse

= Encapsulate subjects and observers
separately

= Allow changing implementation, design
decisions independently

= Reuse subjects and observers
independently

= Add new observers independently of
subjects

CSE 490c -- Craig Chambers 255

Liabilities

= Unexpected updates, spurious updates

= Generally, coordinating when & in what
order to do updates of observers if there is
a sequence of updates to subject

= Limited Update() protocol

= No information about what part of subject
changed

= Avoiding Update() in the middle of an
"atomic" change to subject

CSE 490c -- Craig Chambers 256

A pattern: Template Method

= Motivation: OO design!
= describe the skeleton or default behavior of
an algorithm in one method of a superclass

= let subclasses instantiate/refine its
behavior for their specific context

CSE 490c -- Craig Chambers 257




Participants

abstract class Skeleton {
TemplateMethod(...) {

... SubMethodi(...) ... SubMethod2(...) ... }
SubMethod1(...) { ... } // or abstract
SubMethod2(...) { ... } // ditto

}

class Refinement extends Skeleton {
SubMethod1(...) { ... } // refinement code
SubMethod2(...) { ...} // ditto

}

CSE 490c -- Craig Chambers 258

Applicability

= To implement a generic algorithm once,
and leave the parts that can vary to
subclasses

= To factor common behavior into a
shared place, while still allowing some
differences

= TO provide a framework that controls
subclass extensions, via "hooks"

CSE 490c -- Craig Chambers 259

A pattern: Adapter

= Motivation: to make two different
libraries, with different assumptions,
work together

= Their interfaces aren't compatible
» E.g., if subjects and views were written

separately by third-parties, and then we wished
to combine them

= Can adapt classes statically, or objects
dynamically

CSE 490c -- Craig Chambers 260

Participants (class adapter)

» Client: sends Target.Request()
= interface Target: defines Request()
= class Adaptee: defines OtherRequest()
= Something different than Client wants
= class Adapter implements Target
extends Adaptee {

Request() { this.otherRequest(); }
}

CSE 490c -- Craig Chambers 261

Applicability (class adapter)

= Want to use a class, and its interface
isn't what you want

= Can make a subclass of every bad
interface, and change all instantiations
from the original class to the new class

CSE 490c -- Craig Chambers 262

Benefits (class adapter)

= Allows reuse & integration of
independently developed libraries

CSE 490c -- Craig Chambers 263




Liabilities (class adapter)

= Potential explosion in # of adapter
subclasses (one per adaptee class)

= Need to modify all creations of adaptee
classes to be adapter classes instead

CSE 490c -- Craig Chambers 264

Participants (object adapter)

= Client, Target, Adaptee: as before
= class Adapter implements Target {
private Adaptee adaptee;
Request() { adaptee.otherRequest(); }
}

CSE 490c -- Craig Chambers 265

Applicability (object adapter)

= As with class adapter, but where
impractical to make subclasses of every
class to be adapted, and/or have to
adapt instances of the original class
after they've been created

CSE 490c -- Craig Chambers 266

Benefits (object adapter)

= Class adapter benefits, plus additional
flexibility in handling instances of
Adaptee classes directly

CSE 490c -- Craig Chambers 267

Liabilities (object adapter)

= Extra object creations, forwarding of
messages
= No such overhead with class adapter

= Object identity etc. can be tricky to get
right
» Ditto

= Cannot override methods of adaptee as
easily as with class adapter

= Two-way peer-to-peer adaptation?

CSE 490c -- Craig Chambers 268

Summary (so far)

= Design patterns identify good
programming techniques

= Most are known widely at a general
level, but:

= Point out subtleties & choices in how
they're fleshed out

= Point out pro's and con's
= Point out implementation trade-offs
= Give all this a concise nhame

CSE 490c -- Craig Chambers 269




