CSE 490c -- Craig Chambers 162

What's different about C?
(vs. Java)

= Procedural, not object-oriented

= Explicit, low-level memory model

= Requires manual memory allocation and
de-allocation

= Unsafe basic data structures

= E.g., no array bounds checking
= Requires explicit interface (header) files
= Less standardized libraries

CSE 490c -- Craig Chambers 163

What's good about C?

= C is appropriate when the extra control
over data & performance trade-offs is
required
= Embedded software
= Low-level systems programs
= Run-time systems of higher-level

languages

= Inappropriate when a higher-level

language would be fine

CSE 490c -- Craig Chambers

Why learn C?

= Complement knowledge of higher-level
languages e.g. Java & csh
= Understand trade-offs between different

styles of languages

= Lots of existing software written in C or
C++, some of it appropriately
= And lots of future software

= Impact on society from security
problems caused by poor C code ©

CSE 490c -- Craig Chambers 165

A trivial C program

#include <stdio.h>

int main(int argc, char** argv) {
if (argc > 0) {
fprintf(stderr, "unexpected args\n");
return —1;
}
printf("hello, class!\n");
return 0;

¥

CSE 490c -- Craig Chambers 166

Some comparisons to Java

= Similar statements & expressions as Java
(e.g. if, function calls, return)
= Similar data types to primitive ones in Java
(e.g. int, char)
» But has pointer data types too (e.g. char**)
= Cis procedural, not 00
» Functions are declared at top-level
» Variables can be declared at top-level too
= "Global variables"; they're bad style

» Libraries "imported" using #include

CSE 490c -- Craig Chambers 167

Program entry point

= A C program starts with the unigue
procedure named main
= Optionally takes a length and an "array

of strings" of that length which are the
command line arguments

= "Array of strings" = char**; ugh
= Returns the program'’s exit code
= 0 = success, non-zero = failure

CSE 490c -- Craig Chambers

168

Simple text output

= Java:
= System.out.print("hi ");
= System.out.printin("there");

= C:
= #include <stdio.h>

= printf("hi ");
= printf("there\n");

CSE 490c -- Craig Chambers 169

C memory model

= C exposes the memory resources of the
underlying machine
» Static, stack, and heap memory,
composed of bits, bytes, and words
= Allows programmers to control where their data
values are stored and how much space they
consume
= Different memory regions have different costs
for use, different requirements for correct use
= Programmers can make explicit cost trade-offs
» C puts correctness burden on programmers

CSE 490c -- Craig Chambers 170

Static (a.k.a. global) memory

= Fixed size
= Allocated when program starts
= Deallocated when program ends

= Top-level (global) variables stored here
= Akin to Java's static variables

CSE 490c -- Craig Chambers 171

Stack memory

= Variable (total) size
= A fixed-size chunk is allocated
whenever a procedure is called

» Deallocated automatically when the
procedure returns

= Procedure arguments and local
variables stored here, just as in Java

CSE 490c -- Craig Chambers 172

Heap memory

CSE 490c -- Craig Chambers

= Variable (total) size

= Allocated on demand, by a new
expression (or a malloc(...) call)
= Like Java's new expression

= Deallocated on demand, by a delete
statement (or a free(...) call)

= Java does this automatically via garbage
collection

173

What's in memory?

= Each region of memory made up of a
sequence of bits
= A bit is a single binary digit, a0 or a 1

= 8 bits are grouped into a byte
= Standard unit of memory, e.g. megabytes

= Some number of bytes are grouped into a
word
= Typically 4 bytes = 1 word (32-bit machines)
= Sometimes 8 bytes = 1 word (64-bit machines)

CSE 490c -- Craig Chambers 174

C numeric data types

= char: 1 byte
= short: 2 bytes
= int, long, long long: 4 bytes — 2 words

= float: 4 bytes
= double: 8 bytes

= No bit or boolean; just use ints

CSE 490c -- Craig Chambers 175

Variable declarations

= Each variable declaration allocates space to
hold the variable's value

= Size of memory allocated determined by type of
variable

= Memory region determined by whether the
declaration is of a global or a local variable
= Variable names the allocated memory block
= Allocated memory isn't initialized
automatically!
= Unlike Java
= Can be unsafe, bug-prone!

CSE 490c -- Craig Chambers 176

Addresses and pointers

= Each byte of memory has an address
= Like an integer index into an array of bytes
= Can store an address in memory
= A pointer
= Can dereference the pointer to read or
update the contents of the pointed-to
memory
= Java's object references are pointers

CSE 490c -- Craig Chambers 177

Pointers in C

= C has a new kind of type: a pointer

= Pointer itself consumes 1 word of memory

= Also specifies the type of the pointed-to memory
= Can declare variables to be of pointer type

= [Crappy syntax; don't declare multiple pointer
variables with the same declaration!]

= Examples:
int* pi; // a pointer to an int
char* pc; // a pointer to a char
int** ppi; // a pointer to a pointer to an int

CSE 490c -- Craig Chambers 178

Creating pointer values

= Simple way to make pointers: take the
address of a named variable
= &var
= Pointer target type is type of var

= EX:

inti =5;
int* pi = &j;
int** ppi = π
CSE 490c -- Craig Chambers 179

Dereferencing pointers

= Given a value of pointer type, can:
= Read the memory it points to
= Update (assign to) the memory it points to
= Collectively called dereferencing the pointer
= Use * prefix operator to dereference a
pointer, on either side of assignment
= Ex.
inti=5;
int* pi = &i;
*pi = *pi + 1; // afterwards, what's the value of i? of pi?

CSE 490c -- Craig Chambers 180

More on dereferencing

= Can use a null pointer in place of a valid
pointer
» Ex: int* pi = NULL;
= (use NULL if #include <stdio.h>, 0 otherwise)
= Dereferencing a null pointer is illegal and can do
bizarre things
= Not as fail-stop as in Java
= What if I dereference an uninitialized pointer?
int* pi;
*pi = *pi + 1;

CSE 490c -- Craig Chambers 181

Pointers to heap memory

= Can also create pointers by allocating
new heap memory, and getting its
address
= "new type' (an expression):

» allocates (but does not initialize!) memory in
the heap to hold a value of ype

» returns its address (which has type type*)
= Ex:

int* pi2 = new int;

int** ppi2 = new int*;

CSE 490c -- Craig Chambers 182

Deallocating heap memory

= When done with heap-allocated memory,
must explicitly deallocate it
= "delete expr” (a statement):

= evaluates expr, which should yield a pointer to heap
memory

= deallocates the memory pointed to (not the pointert),
making it available for reuse for future heap allocations

= Static type checking ensures delete must be
deleting a pointer, but...
= What if I try to delete non-heap memory?

= What if I forget to delete heap-allocated memory?
= A storage leak

CSE 490c -- Craig Chambers 183

Lifetime of pointers

= Pointers may not be valid indefinitely
= A pointer becomes invalid when the memory it
points to is deallocated
» A dangling pointer
= Dereferencing an invalid pointer can cause
undefined bad behavior (crash, data loss, security
hole, ...)
= When does a pointer to a global variable
become invalid? To a local variable? To heap-
allocated memory?

CSE 490c -- Craig Chambers 184

Java & pointer lifetime errors

= Java's references to objects are all
pointers

= But Java doesn't allow the program to
ever reference an invalid pointer
= Cannot create pointers to locals
= Cannot explicitly delete memory

= Java also ensures no storage leaks

CSE 490c -- Craig Chambers 185

Structs

» The struct is C's version of a class-like
data structure
= A struct type has a name and a list of
members
= Like the instance variables of a Java class
= Can allocate variables using the struct
type, just as we did with primitive types

= A value of a particular struct type takes up
enough space to hold all its members

= More options than Java's new C/ass operation

CSE 490c -- Craig Chambers 186

Example

struct S { /] C++ style structs
inti;
float f;
char* s;

1

S's; // allocates space for an int, float, & ptr
S* ps; // allocates space for a ptr

CSE 490c -- Craig Chambers 187

Accessing members

= The main thing to do with a struct value
is read and update its members

= Use Java-like dot-notation to access
members, on either side of assignment
= Ex.
Ss;
s.i=5;
s.f = s.i + 3.1415927;
s.s = NULL;

CSE 490c -- Craig Chambers 188

Pointers to structs

= Can dereference a pointer to a struct
and then access its members
S* ps = &s;
(*ps)i = 5;
(*ps).f = (*ps).i + 3.1415927;
» Syntactic sugar: ps->i= (*ps).i
S* ps = &s;
ps->i = 5;
ps->f =ps->i + 3.1415927;

CSE 490c -- Craig Chambers 189

