Running tests

= It can be very tedious to run tests by
hand

= Need to have a test harness that will
construct and pass in the right inputs

= Need to look at the output, and compare it
to the expected output

= Need to handle exceptions, too
= So, let's make tools!

CSE 490c -- Craig Chambers 151

Programming unit tests

= In Java, a simple strategy for unit testing is
to define self-testing classes

= Each class can define a static main method
that runs some set of unit tests of the class

» The main method builds arguments, invokes
operations, checks results, handles exceptions
= To run, just invoke the class as if it were the main
application
= java MyDataStructure

= Still pretty tedious...

CSE 490c -- Craig Chambers 152

Making unit tests easier

= There exist tools to help in constructing
unit test harnesses

= E.g. Junit, a unit test framework for
Java

= Constructs a nice report of successes and
failures

= Provides some convenient helper functions

CSE 490c -- Craig Chambers 153

Defining a JUnit test case

= Import junit.framework.*
= Define a subclass of TestCase
= Implement any number of
void testXXX() methods
= Can invoke:
= assertTrue("msg", testExpr);
= assertEquals("msg', exprl, expr2);
- fail("msg");
» Can throw exceptions
= Can implement void setUp() to initialize some
state used by each textXXX' method

CSE 490c -- Craig Chambers 154

Making test cases runnable

= Add to your TestCase subclass myT7ests:
public static Test suite() {
return new TestSuite(myTests.class);

}
public static void main(String[] args) {
junit.textui.TestRunner.run(suite());

}
= Now can run it:
% java myTests

CSE 490c -- Craig Chambers 155

More on JUnit

= Can collect multiple TestCase
subclasses into a larger TestSuite

= TestCase and TestSuite implement Test
= Can use a GUI interface to run tests
% java junit.swingui.TestRunner myTests

= For more info, see http://junit.org

= "Test Infected: Programmers Love Writing
Tests"

CSE 490c -- Craig Chambers 156




Regression test suites

= Goal: accumulate a lot of good unit
tests
= Run them frequently after changes

» A good regression test suite gives
confidence in development

= Confidence to try big clean-ups without
introducing uncaught bugs

= Confidence to commit changes to rest of
team

CSE 490c -- Craig Chambers 157

Beyond unit tests

= Unit tests aren't enough!

= Need to test that the units work
together: integration testing

= [Why might errors crop up when testing
groups of units that weren't caught
when unit testing?]

CSE 490c -- Craig Chambers 158

Defensive programming

= The best programmers are defensive

= They design & implement code that is
unlikely to break

= If there is a problem, the code breaks
quickly and clearly

= Some strategies:
= Minimize preconditions

= Insert an assertion whenever they mentally
expect and rely on something being true

CSE 490c -- Craig Chambers 159

Programming for change

= Expect change:
» To software's design & requirements
» To interfaces
= To data structures
» To people on the project
= Write code that minimizes reliance on things
that might change, & is flexible in face of
future changes
» Fewer bugs introduced when these things change

CSE 490c -- Craig Chambers 160

Other tools

= Programming language choice(s) influence
how likely programs are to be correct, how
easy programs are to debug
= E.g. array bounds checking, static type checking
= Programming environment tools can help
mechanize much of testing
= JUnit is a simple example

= Some advanced static analysis tools can help to
find bugs

CSE 490c -- Craig Chambers 161




