Programming for
Correctness

CSE 490c -- Craig Chambers

123

Goal: correct programs

= What is correct, anyway?
= Now: defining correct behavior
= Later: finding out what users really want

= How to ensure this?

= How to make programs more likely to be
correct?

= How to keep them correct as they evolve?

CSE 490c -- Craig Chambers 124

Specifications

» A specification describes what a
method/class/... is supposed to do
= (Some) goals:
= Precise
= Complete
= Understandable by people
= Checkable by machines
= Hard to meet all these goals

CSE 490c -- Craig Chambers

125

Pre-/post-conditions

= One way to think about a method's
specification is by a pair of
= A precondition: what the method assumes s true

when it starts

= E.g. what values its arguments are allowed to have
= A postcondition: what the method guarantees is

true when it returns
= E.g. what the value it returns will be
= Under the assumption that its precondition is met!

CSE 490c -- Craig Chambers 126

Examples

= double sqrt(double x):
= pre:x>=0
= post:
= result * result = x
« result >=0
= void sort(int[] values):
= pre: values != null

= post: forall i, j in [0..values.length):
if i < j then values[i] <= values[j]
» (or, post: values is sorted in non-decreasing order)

CSE 490c -- Craig Chambers

127

Who's responsible?

= Preconditions are the responsibility of
the caller

= The callee method can assume they're true
on entry

= Postconditions are the responsibility of
the callee

= The caller can assume they're true when
the call returns

CSE 490c -- Craig Chambers 128

Fail-soft vs. fail-stop

= What happens if there's a bug in the
program, and a pre- or post-condition /isnt
satisfied?
= Things might still work, sort of
= Eventually things might fail, but often in a bizarre
way
= Particularly true in "unsafe" languages like C, where
violating a specification could cause unrelated memory to
get corrupted
= Would like a cleaner failure, the moment the
violation happens

CSE 490c -- Craig Chambers 129

Enforcement

= Can use various language and
programming techniques to check pre-
and post-conditions

= Typically assume each pre- and post-
condition is a regular boolean expression

= Some languages have support for pre-
and post-conditions built-in
= Checked automatically on entry & exit

= Others support assertions

CSE 490c -- Craig Chambers 130

Assertions

= An assertion is a boolean expression at a
given point in the program that's checked at
run-time

» The expression should be true
» If it's not, then the assertion has failed, and some
sort of fatal error should be reported

= Precondition = an assertion on entry to the
method

= Postcondition = an assertion at every return
point of the method

= What about exception throws?

CSE 490c -- Craig Chambers 131

Assertions in Java

= Java 1.4 has built-in support for
assertions
= A new kind of statement:
assert booleanExpr : errorMsg ;
= Semantics:
= Evaluate booleanExpr
= If it's true, OK

= If it's false, throw an AssertionError, which
if unhandled will print out errorMsg

CSE 490c -- Craig Chambers 132

Example

public void sort(int[] values) {
assert values !'= null : "null argument”;
/| the sorting algorithm here
assert isSorted(values) : "sort broke!";
b
private boolean isSorted(int[] values) {
|| return whether values is sorted

by

CSE 490c -- Craig Chambers 133

Compiling & running with
assertions

= To enable the assert statement, must
invoke javac with the —source 1.4
option
= javac —source 1.4 main.java ...

= To run with assertion checking turned
on, must invoke java with the —ea
("enable assertions") flag
= java —ea main ...

CSE 490c -- Craig Chambers 134

Disabling assertion checking

= Assertion checking can be expensive

= Often, assertion checking can be

enabled or disabled, either at compile-

time or at run-time

= Can have lots of assertions enabled during
debugging, fewer during "normal”
execution

= Can sometimes choose which class of
assertions to enable, based on what part of
the system needs extra checking

CSE 490c -- Craig Chambers 135

Assertions vs. error checking

= Don't use assertions to do regular error
checking that should always be present
= E.g. checking whether user input is OK

= Your program should still work, and do
all necessary error checking, with
assertions disabled

CSE 490c -- Craig Chambers 136

Specified errors

= A public library method often specifies what it
does in all cases, including "error” cases
= E.g., what exceptions are thrown for which kinds

of "bad" inputs

= These error cases are not precondition
assumptions, but are postcondition
guarantees
= Don't use assertions for them!

= Good style for public library methods to have
no preconditions, but instead to specify a
response (e.g. an exception) for all possible
inputs

CSE 490c -- Craig Chambers 137

Example

= double sqrt(double x):

- post:
wif x>=0:
= result * result = x
= result >=0

» otherwise:
= throws IllegalArgumentException

CSE 490c -- Craig Chambers 138

Invariants

= A very useful kind of "specification" is
an /nvariant

= Something that is always true about some
part of the software

= A great mental tool in thinking about
the correctness of complex algorithms &
data structures

= A great debugging tool, also

CSE 490c -- Craig Chambers 139

Simple invariants

= One kind of invariant is something
that's true at some point in the program
= If it's not true, then something broke

= An assertion is great for making such
invariants explicit

= E.g. in the middle of the sorting loop, all
values in the array at indexes <= i have
been sorted
« A Joop invariant

CSE 490c -- Craig Chambers 140

Class invariants

= A class invariant is true about the state of
each instance of the class
» Established by the constructor

= Preserved by all public methods

= Can be temporarily violated in the middle of a
modification

» E.g., that a binary search tree is always
properly sorted

= Can be viewed as implicit postconditions of all
constructors and public methods

CSE 490c -- Craig Chambers 141

Formality

= These pre- & post-conditions are pretty
formal
» Makes them precise, processable by machine
» Mostly clear to humans, for these examples
= As functions get more complex, it's
increasingly hard to be formal
= Specifications get very long & involved
» They become less readable by humans
= Informal specifications, even partial
specifications, are better than no
specifications!

CSE 490c -- Craig Chambers 142

Documentation

= The documentation is the main "specification”
most people use
= The more precise, the better

= Several tools can derive documentation from
source code
» E.g. javadoc, which produces web pages

» Looks for special /** ... */ comments

= Documentation in source code is less likely to

be out of date

= But anything that's not machine-checked can get
out of date @

CSE 490c -- Craig Chambers 143

Literate programming

» Literate programming. code is just a
part of an enclosing document
= The document is primary, not the code

= Like any technical document, can have
examples, diagrams, references, etc.

= Encourages good explanations,
documentation

= See e.g. howeb

CSE 490c -- Craig Chambers 144

Correctness proofs

= Ideally, we'd enter formal pre- and
post-conditions and invariants, and
statically prove that our program meets
them: formal verification
= Like typechecking
= Guarantees correct programs!!

= Completely impractical for real
programs
= [Why, do you think?]

CSE 490c -- Craig Chambers 145

Testing

= The realistic alternative is testing
= But testing can never guarantee
correctness, only that particular runs on
particular inputs seem to produce the
right answers
= So let's have lots of test cases!
» A test suite

CSE 490c -- Craig Chambers 146

Good test suites

= A test suite is good if it
= Exposes bugs quickly
= Exposes a//bugs

= This is hard!

= Need to get good coverage over all the things
a program might do
= All paths through the program's control flow
» But what about error paths?
= All "interesting" values of data structures
» What's interesting?

= Good coverage = slow

CSE 490c -- Craig Chambers 147

Unit tests

= A basic kind of test is a unit test
= Test a single unit of software
» E.g. a class or a method

= Suitable for a single programmer who's
developing the unit

= Manageable to strive for tests that
together get good coverage of the
interesting cases of the single unit

CSE 490c -- Craig Chambers 148

"Interesting cases"

= Try to exercise each non-"impossible"
path through each method

= Try to give crazy inputs

= Don't violate preconditions, but do
everything else

= Think about corner cases

= 0, negative numbers, empty arrays, empty
lists, circular references

CSE 490c -- Craig Chambers 149

Test cases vs. specifications

= A good test suite approximates a specification

= Each test has a legal input and the expected
output

= input implies a (partial) precondition
= output implies a (partial) postcondition
= If formal specifications are too unwieldy, a
good test suite can be used instead (or in
addition)
» Test suites are machine checkable, but not as
complete as real specifications
» Another tenet of Extreme Programming

CSE 490c -- Craig Chambers 150

