Development Tools

CSE 490c -- Craig Chambers 73

IDEs

= Integrated development environments
(IDEs), e.g. Bluel and Visual Studio...
» help programmers focus on programming
» by hiding details of underlying tools

= But

important to know differences between e.g.

compile-time & run-time errors

important to know what details are being

managed, e.g. make dependencies

want to gain better control sometimes

want to support additional tools

CSE 490c -- Craig Chambers

74

Manual development tools

= Alternatively, can make programmers
know about and use all the tools that
were packaged up in the IDE
= more knowledge, understanding
= more power (e.g. adding new tools)

= more work on programmer's part

CSE 490c -- Craig Chambers 75

Structure of an IDE

CSE 490c -- Craig Chambers

76

Unix tool suite

CSE 490c -- Craig Chambers 77

Main Java development tools

= Your favorite text editor

= javac filejava...
» compile one or more .java source files into
corresponding .class compiled files
= java Class arg...
= run compiled Java program
» start in class Class with method
public static void main(String[] args)
= typically, there's a Class.class compiled file
= args array initialized with arg... from command line

= http://java.sun.com/j2se/1.4.1/docs/

CSE 490c -- Craig Chambers

78

Handling references to other
classes

= One Java class can refer to many other Java
classes

= When compiling the first class, how does javac
find the other classes, e.g. to check their types?

= When running the main class, how does java find
the other classes that the program references?

= Can give them as extra javac arguments
= What about standard Java library classes?
= Don't want to have to recompile every time
= Can specify a classpath argument to javac

CSE 490c -- Craig Chambers 79

The classpath

= javac —classpath dirs file.java...

= java —classpath dirs Class arg...

» Specifies a series of directories in which to search
for precompiled classes

n dirs has the form pathi: path2: path3....:. pathN

= On cygwin, use ";" instead of ":" and "\\" instead
of "/

= (A class named Foois compiled into a file
named Foo.class)

CSE 490c -- Craig Chambers 80

CLASSPATH

= Instead of specifying —classpath to
every javac and java command, can set
the CLASSPATH environment variable
instead
= setenv CLASSPATH \

$HOME/myClasses: $HOME/yourClasses

= Do this in your .cshrc to "configure"
your Java compilation and execution
environment

CSE 490c -- Craig Chambers 81

Packages

= Java organizes classes into packages
= E.g., java.lang, myApp.UL.windows
= Each Java source file declares its package
= E.g., "package myApp.ULwindows; ..."
= Packages correspond to directory hierarchies

= E.g. the myApp/UI/windows directory contains the
above .java source file

= myApp should be found inside some directory in
CLASSPATH

CSE 490c -- Craig Chambers 82

Archives

= Often want to put a collection of files
together into a single file
= tar is the standard Unix command to do this for
regular files
= Collections of compiled files are libraries
= |d is the command that builds .a files from .o files
= jar is the command for building Java .jar files
= can contain .class files, .java files, and anything else
» E.g., jar ovf myStruff.jar *.{java,class}
= E.g., jar cvf myApp.jar myApp (myApp is a directory)
= Can put a .jar file in the classpath
= Will search the .jar file's contents for matches
CSE 490c -- Craig Chambers 83

Standard libraries

= Every language has a set of standard
things that every program should be
able to access
= Often called standard libraries

= In Java, there's a .jar file that contains
all the .class files for the java package
= Implicitly added to the classpath

CSE 490c -- Craig Chambers 84

Debugging

= jdb
= Starts up a Java debugger
= Works best if used "javac —g ..." before

= Inside can run a program, set breakpoints,
single-step through execution, and print out
program state

= If run under emacs, then emacs will show
corresponding source lines where you are
= Java's multiple threads makes this complicated

CSE 490c -- Craig Chambers 85

Debugger commands

= run Class arg...
» run class Class's main method, on args

= good to set breakpoints first, if want to stop
somewhere

= stop in Class.method
» stop at Class. lineNumber

» set a break point at the start of a method or at a
particular line in a source file

» catch £xn (e.g. java.lang.NullPointerEx'n)
» stop if an instance of Exnis thrown & not caught

CSE 490c -- Craig Chambers 86

More debugger commands

= cont
= continue from a breakpoint
= next

= continue to the next line in the current
method

= step

= continue to the next line, possibly in the
callee or caller method

CSE 490c -- Craig Chambers 87

More debugger commands

= where

= print out the current stack
= print expr
= dump expr

= print out (short or long) description of
result of evaluating expr

» exproften a simple variable name, but can be
as complex as a method call, too

CSE 490c -- Craig Chambers 88

Managing recompilation

= What happens if a source file is changed?

= Possibly need to recompile all the files that
referenced it

= How to do this?
» IDE: built-in
= So far: by hand

» Call javac on out-of-date source files, maybe re-jar
» But: tedious, error prone

= Tool-based approach: make a tool for it!

CSE 490c -- Craig Chambers 89

make

= make is a great tool that manages any kind
of building dependencies

= A Makefile describes rules for when
something depends on something else, and
what to do to make it up-to-date
» based on file modification times stored with every

Unix file

= Invoking make then runs these rules to
decide what, if anything, needs to be done to
bring things up-to-date

CSE 490c -- Craig Chambers 90

Dependencies

= Makefile includes lines of the form
target... : source...

= Means that each target depends on each
source

= If any of the sources are modified, then all
the targets are out-of-date

= Example:
main.class: main.java

CSE 490c -- Craig Chambers 91

Actions

= For each dependency, can add an
action to perform to bring the target(s)
up-to-date
= Action is a series of shell command lines
» each line must start with a tab
» use /bin/sh syntax
= Example:
main.class: main.java
javac main.java

CSE 490c -- Craig Chambers 92

Invoking make

= make farget..
= uses Makefile in current directory to bring one or
more targets up to date, using their actions
= does nothing if all targets up to date

= if omit target arguments, then rebuild the first
target in Makefile
» the default target

> make main.class
Jjavac main_ java
>

CSE 490c -- Craig Chambers 93

Controlling output

= By default, make prints out each action it
performs
= Can disable printing an action by prefixing it
with @
= Example:
main.class: main.java
@echo Compiling main.java...
@javac main.java
> make main.class
Compiling main.java...
>

CSE 490c -- Craig Chambers 94

Dependency patterns

= Often have a simple rule over all files
with certain naming patterns
= Can use % in the target and source

= Rule applies to any real targets and
sources where % is replaced by the same
thing on both sides

= Example:
%.class: %.java
= Means that X.class depends on Xjava

CSE 490c -- Craig Chambers 95

Actions for patterns

= Actions for dependency patterns need to
have patterns too
» $@: the target
» $/: the sources
» $<: the first source
» $*: the thing matched by * in the rule
= Example:
%.class: %.java
@echo "compiling class $* ($< to $@)"
javac $<

CSE 490c -- Craig Chambers 96

Dependency trees

Example dependency tree

= One target can depend on another
target, ad nauseum
= Dependency rules form a DAG (directed

acyclic graph)

= Make figures out how to rebuild a
target by first making sure its sources
are up-to-date, which may cause make
to first rebuild them, recursively

CSE 490c -- Craig Chambers 97

%.class: %.java
javac $<

main.jar: main.class helper.class
jar cfv $@ $°

install: main.jar
cp $< ${HOME}/bin

> make install

Jjavac main.java

Jjavac helper.java

Jar cfv main.jar main.class helper.class
cp main.jar /homes/iws/mylLogin/bin

CSE 490c -- Craig Chambers 98

Makefile variables

Substitutions in make vars

= Can define variables in Makefiles, and use
them in rules and actions
» VARNAME = REPLACEMENT...
= Referenced by ${ VARNAME}

= Example:
JAVAC_FLAGS = -g
%.class: %.java
@echo "compiling class $*"
javac ${JAVAC_FLAGS} $<

CSE 490c -- Craig Chambers 99

= Can do replacements in variables
= ${VAR: pre®opost=new}

= match each word in $ VAR against
pre®o post, where % can match anything

= replace matches with new

» if new contains %, substitute with what %
matched

= Good for adjusting extensions, prefixes

CSE 490c -- Craig Chambers 100

Examples of substitutions

Make quiz

SRCS = A.java B.java C.java
OBIS = ${SRCS:%.java=%.class}
default: ${OBJS}

INSTALL_DIR = ${HOME}/bin
INSTALLED_OBIS =\
${0OBJS:%=${INSTALL_DIR}/%}
${INSTALL_DIR}/%.class: %.class
cp $< $@
install: ${INSTALLED_OBI]S}

CSE 490c -- Craig Chambers 101

= Extend Makefile so that "make clean"
removes all .class files

= Add a rule so that I can say "make
foo.java.ps", for any foo.java, to format my
java source file using enscript =2r into a
nicely formatted .ps file

= Add a rule to put all my .class files into a
single .jar file

= Add a variable defining all the .java files in
my application, and only clean, format, and
archive those files

CSE 490c -- Craig Chambers 102

