Processes

= Can run several programs simultaneously
= E.g., a pipeline: each program runs concurrently
= One program can be running in foreground
= E.g., the program reading keyboard input
= Some progs can be running in background

= E.g., long-running programs whose output is
collected into a file

= Some programs can be suspended
= Stopped temporarily, for some reason

= Each simultaneously running program is
called a process or a job

CSE 490c -- Craig Chambers 54

Starting in background

= Can start a program in background by
appending & to its command line
= find . —name "*.java' \
—exec grep foo {3} \; \
—print > filesContainingFoo.txt &

= <do something interactive>
= <then go check on output of find>

CSE 490c -- Craig Chambers 55

Controlling processes

= Can suspend the current foreground job by
typing ~z (control-z)
n bg
= moves the current suspended job to background
] fg

= moves the current background or suspended job
to foreground

= jobs
= shows the current suspended & background jobs,
and their job #'s

CSE 490c -- Craig Chambers 56

Processes and process id's

= PS aux

= shows all the processes on the machine,
and their owners, process id's (pids), etc.

= kill pid...

= Kill one or more processes with the given
process id's

CSE 490c -- Craig Chambers 57

Defining your own commands

= 3 ways to define your own commands:
= Write a new program, compile it, and put
the executable somewhere in your path
» Heavyweight
= Write a script, put it somewhere in your
path
» Lightweight
= Define an alias, e.g. in your .cshrc
= Flyweight

CSE 490c -- Craig Chambers 58

Aliases

w alias aliasName command arg...

» Defines aliasName to be an abbreviation for
command arg...

» Whenever type aliasName aliasArg... at the shell
prompt, replaced with
command arg... aliasArg...
= Doesn't work in other contexts, e.g. —exec args

= alias Il Is -
= alias k kill -9

CSE 490c -- Craig Chambers 59

Shell scripts

= Aliases work for one-liners

= For more complex tasks, can write shel/
scripts

= A script is a file containing a sequence
of regular Unix shell commands

= includes control structure commands like if,
while, foreach, switch

= includes argument processing operations
= (.cshrc is just a script run at log-in)

CSE 490c -- Craig Chambers 60

Making a script into a program

= Must start with #!/bin/csh

= This says that /bin/csh should be used to
interpret the rest of the lines

= Can use other interpreter programs,
e.g. /bin/perl, /bin/sh, ...

= Must be marked as executable
= chmod +x scriptName
= Must be in a directory in the path

CSE 490c -- Craig Chambers 61

Shell script arguments

= The argv shell variable is set to the list of
arguments to the shell
= $argv expands to the list of arguments
= $* is a synonym for $argv
. ?;va/[n] refers to the s element of the var
ist
= $argv[] is the nth shell argument
= $nis a synonym for $argv[r]
» $#varrefers to the length of the varlist
= $#argv is the number of shell arguments
= $0 is the name of the script being run

CSE 490c -- Craig Chambers 62

Foreach command

= foreach variVame (arg...)
... body command lines ...
end
= sets varName to each argin turn
» arg is often a pattern

= evaluates body command lines for each
setting

CSE 490c -- Craig Chambers 63

Examples

= foreach f (*.htm *.html)

echo "moving $f to www/$f"
mv $f www
end

= foreach arg ($*)

... do something to $arg ...
end

CSE 490c -- Craig Chambers

Advanced variable substitution

= Often want to process shell variable bindings
(e.g. foreach loop variables)

= Can add qualifiers to extract pieces e.g. of
pathnames

= if $var == a/b/c.d.e, then
» head: $varh == a/b
» tail: $vart == c.d.e
» root: $var.r == a/b/c.d
» extension: $vare == e

= Can repeat modifiers, e.g. $var-h:h == a

CSE 490c -- Craig Chambers 65

Example

= foreach f (*.htm)
set g = ${f:r}.html
echo "fixing extension of $f to $g"

mv $f $g
end

= Note that can uses braces after $ to
clearly identify the variable subst. expr.

CSE 490c -- Craig Chambers

66

If command

= if (expr) then
... commands ...
else if (expr2) then
... commands ...
else
... commands ...
endif
» zero or more else-if cases
» optional else case

CSE 490c -- Craig Chambers 67

Test expressions

= String comparisons: ==, =

= String pattern-matching: =~, I~

» Numeric comparisons & operators, e.g. +, <
= Boolean expressions, e.g. &&, ||, !

» Parenthesized subexprs

= if ("$f" == README || "$f" =~ * java) ...
= if ($#argv < 2) ...

CSE 490c -- Craig Chambers

68

File test expressions

= Also can test properties of files
= -€ fileName: fileName exists?
= -f fileName: fileName is a plain file?
= -d fileName:. fileName s a directory?
= -X fileName:. fileName is executable?

« if (-e $f && ! —d $f) ...

CSE 490c -- Craig Chambers 69

See also

= While

= break, continue

= switch, case, default, breaksw
= shift

» exit

= pushd, popd

= time

CSE 490c -- Craig Chambers

70

Shell as a
programming language

= How is shell script programming
different from regular programming?
= Types
= Declarations
= Procedures
= Data structures
= Primitive/built-in operations
= Libraries
= Compilation/execution model

CSE 490c -- Craig Chambers 71

