

Rules

- Can pick up a cup
- Can compare the price on the cup in hand with the price of a cup on the table.
- Can swap the cup in hand with a cup on the table.

Steps in solving a computational task

Design an algorithm: A precise, unambiguous

will express our algorithms in pseudocode.)

• Turn pseudocode into computer program.

procedure for solving a computational task. (We

- Should stop when the cup in hand is guaranteed to be the minimum priced one.
- give all the instructions at the beginning.
- should work no matter how many cups there are.

Solution

- Pick up first bottle, check price
- Walk down aisle. For each bottle, do this:
 If price on bottle is less than price in hand, exchange for one in hand.

Examples	
<i>i</i> = 5	Sets <i>i</i> to value 5
<i>j</i> = <i>i</i>	Sets <i>j</i> to whatever value is in <i>i</i> . Leaves <i>i</i> unchanged
i = j + 1	Sets i to $j + 1$. Leaves j unchanged
i = i + 1	Sets <i>i</i> to 1 more than it was.

Swapping

- Suppose x and y are variables. How do you swap their values?
- Need extra variable!

 $tmp \leftarrow x$ $x \leftarrow y$ $y \leftarrow tmp$

Find a number in a sorted list, if it's there

- Underneath each cup is a ping pong ball.
- On each ping pong ball is a number.
- The numbers are in sorted order.
- Goal: to look at as few ping pong balls as possible!

Efficiency Matters

.

		Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second in cases where the running time exceeds 10 ²⁵ years, we simply record the algorithm as taking a very long time.						
	п	$n \log_2 n$	n ²	n ³	1.5 ⁿ	2 ⁿ	<i>n</i> !	
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec	
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years	
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long	
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	1017 years	very long	
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long	
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long	
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long	
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long	

