
University of Washington, CSE 190 M
Homework Assignment 5: Kevin Bacon

This assignment focuses on querying relational databases using SQL in PHP along with HTML/CSS.

Background Information:
The  Six Degrees of  Kevin Bacon is a game based upon the theory that every actor can be connected to actor 
Kevin Bacon by a chain of  movies no more than 6 in length.  Most, but not all, can reach him in 6 steps.  12% of  all  
actors cannot reach him at all.

Your task for this assignment is to write the HTML/CSS and PHP code for a web site called MyMDb that mimics 
part of  the popular IMDb movie database site.  Your site will show the movies in which another actor has appeared 
with Kevin Bacon.  The site will also show a list of  all movies in which the other actor has appeared.

(If  you prefer, you may use another actor rather than Kevin Bacon as the center point, so long as that actor is in our 
database and has a large number of  connections to other actors.)

The following provided files are on the course web site to get started:

• top.html, some common HTML that should appear at the beginning of  every page
• bottom.html, some common HTML that should appear at the end of  every page
• index.php, the initial front page that welcomes the user to the site

The front search page index.php has two forms where the user can type an actor's name.  The user can search for  
every film the actor has appeared in (which submits to  search-all.php), or every film where both the actor and 
Kevin Bacon have appeared (which submits to search-kevin.php).

Here are files you must write and turn in:

• search-all.php, the page showing search results for all films by a given actor
• search-kevin.php, the page showing search results for all films with the given actor and Kevin Bacon
• common.php, any common code that is shared between pages
• bacon.css, the CSS styles shared by all pages



Front Page, index.php:
The initial page, index.php, allows the user to search for actors.  This file is already provided to you on the course  
web site; you may modify it in any way you like, or you may leave it as-is.  If  you modify it, turn in your modified 
version.  The forms on the page contain two text boxes that allow the user to search for an actor by first/last name.

• firstname for the actor's first name
• lastname for the actor's last name

Movie Search Pages, search-all.php and search-kevin.php:
The two search pages perform queries on the imdb database on Webster to show a given actor's movies.  Query the 
database using PHP's PDO library as taught in class.  Connect to the database using your UW NetID as your user  
name, and the MySQL password that was emailed to you.  (If  you lost your password, email your TA ASAP.)

The data in both tables should be sorted by year descending, breaking 
ties by movie title ascending.  The tables have three columns: A number 
starting  at  1;  the  title;  and  the  year.   The columns  must  have  styled 
headings,  such as  bold.   The rows must have  alternating background 
colors, called "zebra striping."

Database and Queries:
The database has the following relevant tables.  (The roles table connects actors to movies.)

table columns
 actors id, first_name, last_name, gender, film_count
 movies id, name, year
 roles actor_id, movie_id, role

Your search pages perform the following queries. For some queries, you must use a join on several database tables.

1. search-all.php - List of  all the actor's movies: A query to find a complete list of  movies in which the actor has 
performed, showing them in an HTML table.  If  the actor doesn't exist in the database, don't show a table, and  
instead show a message such as, "Actor Borat Sagdiyev not found."  If  the actor is found in the database, you may  
assume that any actor in the actors table has been in at least one movie.

Hint: To find the proper query, you will need to join all three of  actors,  movies, and roles.  Retain only the rows 
where the relevant IDs from the tables match each other, and also retain only the rows that pertain to your particular 
actor.  Our solution joins 3 tables in the FROM clause and has one test in its WHERE clause.

2. search-kevin.php - List of  movies with this actor and Kevin Bacon: A query to find all movies in which the 
actor performed with Kevin Bacon. These movies should be displayed as a second HTML table, with the same  
styling as the first. This is the harder query and should be done last.  If  the actor doesn't exist in the database, don't  
show a table, and instead show a message such as, "Actor Borat Sagdiyev not found."  If  the actor has not been in 
any movies with Kevin Bacon, don't show a table, and instead show a message such as, "Borat Sagdiyev wasn't in any 
films with Kevin Bacon."

This query is bigger and tougher because you must locate a pair of  performances, one by the submitted actor and  
one by Kevin Bacon, that both occurred in the same film.

Hint: You must join a pair of  actors (yours and Bacon), a pair of  roles that match those actors, and a movie that 
matches those two roles.  Our query joins 5 tables in the FROM clause and contains 3 conditions in its WHERE clause.

3. both pages - Find the ID for a given actor's name: One thing that makes this program more complicated is 
the fact that some actors share the same name.  The imdb data resolves this by giving them slightly different first 
names, such as "Will (I) Smith" vs. "Will (II) Smith".  The user presumably doesn't know or understand this, so they 
will just type "Will Smith" and expect the program to do the right thing.  But if  your code naively searches for "Will  
Smith" in the database, it will not find any match.



To resolve this, you need a third query that searches for the best match for the actor's name that was typed by the  
user.  This query finds and return the ID of  the actor whose last name exactly matches what was typed by the user,  
and whose first name starts with the text typed by the user.  If  more than one such actor exists, you use the actor  
who has appeared in the most movies, breaking ties by choosing the actor with the lower-numbered ID.

You could figure out how many movies an actor has appeared in using a series of  joins between tables, but this can 
be hard to get right and can be slow.  To help, we have created a column in the actors table named film_count that 
contains the total number of  roles played in all films by the actor.  You can use this column to help write your query.

For example, if  you have written this query correctly and searched the larger  imdb database for "Will Smith", you 
would produce the actor ID 444807.  For "David Cohen" you would produce the ID of  90749.  For "Elizabeth  
Taylor" you'd produce 809516.  On the imdb_small data set, for "Chris Miller" you would produce 321300.

Hint: You don't need any JOINs here because all information comes from the actors table.  If  you don't want to 
write this query right away, you could temporarily hard-code an actor's ID or just write a query to return the first  
actor with a given first/last name, which is what the correct query would do anyway when there are no conflicts.

The behavior of  the page is undefined if  the actor being searched for is Kevin Bacon himself.

Appearance Constraints (all pages):
Your three PHP pages must match certain appearance criteria listed below.  Beyond these, any other aspects of  the  
page are up to you, so long as it does not conflict with what is required.  The intention is to give you some flexibility  
to be creative with the appearance of  your page, while also expecting you to practice some non-trivial CSS styling.  
Please link to any images on your page using absolute paths, not relative paths.

We'll mention our own page's styles, but you don't have to exactly match those as long as you follow these rules.

• All pages must begin with the content from top.html and end with the content from bottom.html, including 
the  "favicon",  MyMDb logo,  W3C validator  button links,  and  the  two forms  to search  for  movies.   It  is 
especially important not to modify the provided form query parameters' names such as first_name.

• The main section of  content must be a centered area that is narrower than the overall page body.  This main  
section should have a different background color than the overall body behind it, to make it stand out.  (Our page  
uses a width of  90% and a white background, atop a body with a background of  #dad9d4.)

• Every page should have a descriptive level-1 heading explaining the contents of  the page.  (Our pages have headings  
such as, "Results for Kevin Spacey" or "The One Degree of  Kevin Bacon".)

• The top and bottom banner areas containing the MyMDb logo and W3C images should have a common color 
scheme and/or background image that make them stand out from other content on the page.  (Ours use a  
background image of  banner-background.png and white text.)

• The site should have a consistent  color and font scheme used throughout.  Your CSS should be structured 
such that it is easy to change the color/font scheme by modifying colors and fonts in a single place in the file.  
(We use Verdana / sans-serif  for text, black-on-white for the main area, and #dad9d4 for gray shaded backgrounds.)

• All content should have reasonable sizing, padding, and margins such that content does not awkwardly bump 
into other content on the page.  Content should also be aligned in reasonable ways for easy viewing.  (We center  
our various elements; our forms are 24em in width; many elements have 1em of  padding or margin for separation.)

• Any query results should be shown in tables with captions describing the tables, and headings describing each 
column.  The rows of  the table should alternate in background color, also called "zebra striping."  Borders  
should be collapsed.  (Our page has every other row use a background of  #dad9d4, starting with the 2nd row.)



Development Strategy:
Because the database is large and shared by all students, a bad query can hurt performance for everyone.  We have a  
smaller database imdb_small with fewer records.  While testing, please use that database and not the full  imdb. 
When you think your code works, switch your PHP code to refer to imdb.

Use the  MySQL console to develop your queries before writing PHP SQL 
code.  Example test actor IDs are 376249 (Brad Pitt) or 770247 (Julia Roberts). 
If  your query takes too long, press Ctrl-C to abort it.

Enable  exceptions  on  your  PDO object  to  spot  mistakes,  as  shown in  the 
textbook and slides.  Print your SQL queries while debugging to see the actual 
query being made.  Many PHP SQL bugs come from improper SQL query 
syntax, such as missing quotes, improperly inserted variables, etc.

You do not need to secure your page against HTML/SQL injection attacks to get full credit, but you may if  you like.

Implementation and Grading:
Your HTML (including PHP output) should pass the W3C HTML validator.  Your CSS code should pass the W3C 
CSS validator and should avoid redundant or poorly written rules.

Your code should follow style guidelines similar to those on our past homework specs.  Avoid global variables, and 
use descriptive names.  Place descriptive  comments at the top of  each file, each function, and on complex code.  
Also place a comment next to every single SQL query you perform that explains what that query is searching for.  
Use parameters and return values properly.  Show proper separation of  content, presentation, and behavior between 
HTML, CSS, and PHP.

With  so  much  in  common between  the  two  search  pages,  it  is  important  to  find  ways  to  avoid  redundancy.
You should use the PHP  include function with shared common content included by various pages.  Also use 
functions as appropriate to capture structure and repeated code and HTML content.

For full credit, do not directly write any actor's ID number anywhere in your PHP code, not even Kevin Bacon's. 
For example, don't write a line like:
$bacon_id = 22591;   # Kevin Bacon's actor id  (BAD, don't do this)

It is not acceptable to perform query filtering in PHP.  Your SQL queries must filter the data down to only the  
relevant rows and columns.  For example, a bad algorithm would be to write a query to fetch  all of  the actor's 
movies, then another query to fetch all of  Bacon's movies, then use PHP to loop over the two looking for matches. 
Each of  the major tasks described previously should be done with a single SQL query to the database (query #1 or 
#2 described previously, preceded by a call to query #3 to get the actor's ID first for use in query #1 or #2).

In general you should limit yourself  to the SQL query syntax discussed in class.  In particular, you should not use  
advanced material such as SQL sub-queries on this assignment.  If  you are not sure whether a given SQL command  
or syntax is allowed, please ask your TA or instructor.

Format your code similarly to the examples from class.  Properly  use whitespace and indentation.   Use good 
variable and method names.  Avoid lines of  code more than 100 characters wide.

Do not place a solution to this assignment on a public web site.  Upload your files to the Webster server at:

• https://webster.cs.washington.edu/your_uwnetid/hw5/

Copyright © Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.


	University of Washington, CSE 190 M
Homework Assignment 5: Kevin Bacon
	Background Information:
	Front Page, index.php:
	Movie Search Pages, search-all.php and search-kevin.php:
	Database and Queries:
	Appearance Constraints (all pages):
	Development Strategy:
	Implementation and Grading:


