
University of Washington, CSE 190 M
Homework Assignment 8: Kevin Bacon

This assignment focuses on interacting with relational databases in PHP using SQL, as well as tying together all
the concepts taught throughout this course. You will write the following pages:

Background Information:
The Six Degrees of Kevin Bacon is a game based upon the claim that every film actor can be connected to
fellow actor Kevin Bacon by a chain of movies no more than 6 in length — or, in other words, that all actors are
removed from Kevin Bacon by only six degrees of movie-separation. (In reality, according to oracleofbacon.org,
12% of all actors cannot be connected to Kevin at all — but of those who can, 99.98% are within six degrees.)

Your task for this assignment is to write the HTML and PHP code for a web site called MyMDb that mimics part
of the popular IMDb movie database site. Your site will show two lists of movies: (1) the movies in which a
particular actor has appeared with Kevin Bacon, and (2) all career movies in which that actor has appeared.

Both the front page mymdb.php and the search page search.php have a form where the user can type an actor's
name. When the form is submitted, results are shown on search.php. Turn in the following files:

• mymdb.php, the front page

• bacon.css, the CSS styles for both pages

• bacon.js, the JavaScript code for both pages

• search.php, the search results page

• common.php, all common code that is shared between pages

• hw8.zip, a ZIP archive containing any additional files (optional, if needed)

Since this is the last assignment of the quarter, and one of its goals is to tie together much of the material you
have learned, we are not providing you with any skeleton code to get started — you will need write all HTML,
CSS, JavaScript, PHP, and SQL code for this assignment. You're on your own!

IMPORTANT: To assist with grading, every PHP/HTML page must have a script tag that links to the
following instructor-provided JavaScript code. (For now this file will be blank.)

• http://www.cs.washington.edu/education/courses/cse190m/11su/homework/8/provided.js

Appearance Constraints (both pages):
Your mymdb.php and search.php must both match certain appearance criteria. Both pages must have:

• The same title, and links to the same CSS and JavaScript resources.

• A "favorites icon". (If you like, you may use the provided mymdb_icon.gif from the course web site.)

• A prominently displayed MyMDb logo. (If you like, you may use the provided mymdb.png.)

• The standard W3C validator and JSLint buttons, linked to their corresponding sites.

• A form to type an actor's first and last names to search for matching actors in the database.

• A central area of results and info. In mymdb.php this area contains content of your choice, but it must
include at least one image of Kevin Bacon and general text about the site. In search.php this area
contains a list of the movies in which the actor appeared with Kevin Bacon, as well as a list of all that
actor's movies.

• A common stylistic theme, and a non-trivial number of styles such as fonts, colors, borders, and layout.

Beyond these constraints (and any other appearance constraints listed in the sections below), all other aspects of
the page are left to you to design. We'd prefer for your solution to not look exactly like ours — so be creative!
Any images other than the ones provided (which you don't have to use) should be uploaded to your Webster
space. All images should be linked using absolute URLs, not relative URLs.

With so much HTML code identical between the two pages, it is important to avoid redundancy. You should use
the PHP include function with a shared common file included by both pages, as you did in HW4 (NerdLuv), to
factor out all redundant HTML code, as well as any PHP functions that you call in both PHP files.

Front Page, mymdb.php, and common search form:
The initial page, mymdb.php, contains an image of Kevin Bacon and any general information you like. It also
has the common search form (which appears on both pages) that allows the user to search for an actor to match
with Kevin Bacon. The form must contain two text boxes, one for the first name and one for the last name.

The end goal is to submit this form to search.php to show movie results for that actor. However, before the form
is submitted you will need to convert the partial text the user entered into a known actor. It is quite possible that
the name the user types (such as "Will Smith") will match more than one actor — or that the name will match no
one at all in the database. As such we will need a way of figuring out which unique actor in the database (if any)
the user is referring to.

To do this you will be making use of an actorid.php web service we've set up that will give you search results
for whatever (partial or complete) first and last names the user enters. The full behavior of this web service is
documented in the next section, but it returns XML containing the full name and unique ID of a matching actor
in the database.

Thus when the user clicks the “go” button, you will need to pause the form submission while you contact the
web service (using an Ajax request) to find out the ID of the actor (if any) that matches the first and last name
entered. Once you've received information back from actorid.php about the name entered, you can then resume
the form submission, so that search.php is sent the unambiguous ID and correct name of the actor to display.

The information flow is roughly the following:
1. mymdb.php User types a first and/or last name into the form and clicks the "go" button.
2. bacon.js JavaScript code pauses the form submission, and initiates an Ajax request to look up

the actor ID and full name for the entered terms.
3. actorid.php Looks up the actor with that first/last name and outputs them as XML.
4. bacon.js Processes the XML that comes back to discover the proper actor ID and full name,

and ensures this new data will be passed to search.php.
5. bacon.js Resumes the form submission to search.php, now including the ID and full name.
6. search.php Shows the movie results for the actor of the provided ID.

Note that you should still use the form itself to convey the additional information to search.php, rather than
using JavaScript to compose a query string, and then navigating to a new URL. (Hint: Look at the HTML Forms
lecture slides for ways of including information in a form that isn't visible to the user.)

Pausing/resuming the form submission: If your “go” button is a submit button inside a form tag, any click
on it will attempt to immediately submit the form. You don't want this to happen right away, since your
JavaScript code needs to do an intermediate Ajax request to look up the actor's ID before the form can actually
be submitted. To “pause” the form submission, you can listen for the form's submit event and call .stop() on
that event to prevent it from happening right away. Then, when you're ready to actually submit the form, you can
cause it to be submitted by calling .submit() on the DOM object representing the form tag.

If the actorid.php web service is unable to find anyone matching the provided search terms, your code should
inject an error message into the page indicating this to the user, and halt submission of the form altogether.

Using the provided actor ID web service, actorid.php:

parameter name value
first_name actor's (partial or complete) first name as a string, such as "will"
last_name actor's (partial or complete) last name as a string, such as "shatner"

imdb when set to any truthy value, will cause the service to use the full
imdb database rather than the imdb_small database used for testing

The provided actorid.php service provides IDs and full names for (partial or complete) actor names given to it.
For example, to search for the ID of an actor with partial names "rad" and "pit":
https://webster.cs.washington.edu/cse190m/homework/hw8/actorid.php?first_name=rad&last_name=pit

This query would return the following XML output, containing the actor ID and full name of the matching actor:
<actor id="376249" first_name="Brad" last_name="Pitt" />

The service will issue an HTTP error code of 404 Not Found if no actor is found in the database that matches
the given search terms. By default, to guard against inefficient queries bogging down the database server, the
web service submits its queries to the smaller imdb_small database. Once you are satisfied that your queries
are efficient, you should set the imdb parameter to any truthy value to switch the service to use the full imdb
database. You must submit your finished assignment with this parameter set.

Movie Search Page, search.php:
The search.php page performs two queries on one of the IMDb databases on Webster to show a given actor's
movies. Query the database using PHP's mysql_ functions. Connect to the database using your UWNetID as
your user name, and the MySQL password that was emailed to you. (If you lost your password, email us.)

The host to connect to should be localhost, since you will be running your PHP code on Webster. The
database you connect to should be imdb_small while you're developing your program; when you are satisfied
that your queries are efficient, you should switch to using the full imdb database.

If your search.php page accepts any of the following values as parameters, they must be named as follows:

• actor_id for an actor's ID
• first_name for an actor's first name

• last_name for an actor's last name
• full_name for an actor's full name

The database has the following relevant tables. (The roles table connects actors to movies.)

table columns
 actors id, first_name, last_name, gender
 movies id, name, year
 roles actor_id, movie_id, role

Your page displays the following output. For each database query, you must perform a join between several
database tables.

1. List of movies with this actor and Kevin Bacon: First display a list of all movies in which the given actor
performed with Kevin Bacon. These movies should be displayed as an HTML table, with the styling described
below. This is the harder of the two queries and should be done last, although it is displayed first on the page.

If the actor has not been in any movies with Kevin Bacon, you should not show a table. Instead show a message
such as, “Borat Sagdiyev hasn't been in any films with Kevin Bacon.”

This query is larger and more difficult because you must link a pair of performances, one by the submitted actor
and one by Kevin Bacon, that occurred in the same film. Although you will be using the provided actor's ID,
which is being passed as a parameter, you should not directly write Kevin Bacon's actor ID anywhere in your
PHP code. For example, don't write a line like:
$bacon_id = 22591; # Kevin Bacon's actor id (BAD, don't do this)
Instead, since Kevin Bacon's name is unique in the database, you must format your query to use his name.

Hint: You must connect two actors (the given actor and Bacon) to their respective roles, and those roles to a
movie they both appeared in. Our query joins 5 tables in the FROM clause and contains 3 conditions in its WHERE
clause. (Note that it's possible to eliminate one of the joined tables, but this isn't required.)

2. List of all the actor's movies: Secondly, display a list of all movies the given actor appeared in in their entire
career. This is the easier of the two queries, and should be done first. These movies should also be displayed in
an HTML table, as described below. (You may assume that any actor in actors has been in at least one movie.)

Hint: Join actors, movies, and roles, then retain rows where IDs from the tables (actor ID, movie ID) match
each other and the ID of your actor. Our solution joins 3 tables in the FROM clause and has one test in its WHERE
clause. (Again, it's possible to eliminate one of the joined tables, but not required.)

Table data: The data in both tables should be sorted by year in descending
(reverse-chronological) order. Ties should be broken by sorting the movie
title in ascending (alphabetical) order. The tables have three columns: A
number starting at 1, the title, and the year. The headings of each column
must be styled differently in some way (bolded, for example). The rows must
have alternating background colors, called “zebra striping.” (Use PHP to apply styles to alternating rows.)

It is not acceptable to filter your query results using PHP code: you must use SQL to filter the data down to the
relevant rows and columns. For example, a very bad algorithm would be to write a query to fetch all of the given
actor's movies, then another query to fetch all of Bacon's movies, and then use PHP to loop over the two looking
for matches. Each of the two major operations described above should be done using a single SQL query.

If the user enters Kevin Bacon himself as the actor to match with, the behavior of the page is undefined.

Developing Your Program:
Because the database server is shared by all students, an inefficient query to the full imdb database (which is
very large) can hurt performance for everyone. To remedy this, we've set up a smaller database imdb_small
with a much smaller set of movie information for you to use during development. When you're satisfied that
your queries are efficient, switch your PHP and JavaScript code to query
against the full imdb. If you slow down the server for everyone by
submitting an inefficient query to the full imdb database, we reserve the right
add you to a “wall of shame” on the course web site!

Use the MySQL console to develop your queries before moving your queries
to PHP. For development purposes, some good test actor IDs to use are
376249 (Brad Pitt) and 770247 (Julia Roberts). If your query ever takes too
long (more than a second), press Ctrl-C to abort it immediately.

When you're ready to move your queries to PHP, test the results returned by the PHP mysql_ functions to

troubleshoot errors (the functions all return false if they fail). If your query is not working properly or giving
you the wrong results, be sure to check the exact text of the query that's being sent to the MySQL server from
your PHP code — it may be different than you think! Often times little SQL syntax errors are introduced when
you put your query in PHP, so it helps to see precisely the text that's being sent to the database server. Hint: Save
the text of your SQL query in a variable, then print that variable inside pre tags.

Implementation and Grading:
Submit your work from the course web site. For reference, our search.php contains roughly 95 lines (65
"substantive"); we have roughly 90 lines (60 substantive) of common shared code; our mymdb.php is very
short, only around 15 lines; our bacon.js is roughly 50 lines (35 substantive); and bacon.css is 90 lines (57
substantive).

All HTML output sent by your PHP code should pass the W3C XHTML validator. Your CSS code should pass
the W3C CSS validator and should avoid redundant or poorly written rules. Your JavaScript code should pass the
JSLint tool.

Your code should follow style guidelines similar to those on our past homework specs. Minimize redundant
HTML/PHP code. Use functions and include files to break up code. Avoid global variables. Place descriptive
comments at the top of each file, each function, and on complex code. Place a comment next to every SQL
query you that explains what the query is looking for. Use parameters and return values properly.

For full credit, you must write your JS code using unobtrusive JavaScript, so that no JavaScript code, onclick
handlers, etc. are embedded into the XHTML code. Properly use the XHTML DOM to manipulate page content.

Show proper separation of content, presentation, and behavior between HTML, CSS, and JS/PHP. As much as
possible, your JS code should use CSS classes and rules rather than manually setting style properties in the JS.

Format your code similarly to the examples from class. Properly use whitespace and indentation. Use good
variable and method names. Avoid lines of code and comments more than 100 characters wide.

Do not place a solution to this assignment on a public web site. Upload your files to the Webster server at:

https://webster.cs.washington.edu/your_uwnetid/hw8/

© Copyright Marty Stepp / Jessica Miller, licensed under Creative Commons Attribution 2.5 License.

