
Roy McElmurry

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/text/TextFormat.html

  The TextFormat object can be used to set many other
properties as well.

Syntax:

import flash.text.*;
var textField:TextField = new TextField();
…
var format:TextFormat = new TextFormat(font, size, color, …);
textField.setTextFormat(format);

  The auto size property must be set so that the
TextField knows how it should respond to formatting

  In this case in treats the text as left justified

Syntax:

import flash.text.*;
var textField:TextField = new TextField();
…
var format:TextFormat = new TextFormat(font, size, color, …);
textField.autoSize = TextFieldAutoSize.LEFT;
textField.setTextFormat(format);

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/text/TextFieldAutoSize.html

More: Constants

  The for-each loop iterates over the indices of any
iterable object, not the values

  You can then use the index to access that data at
that index

Syntax:

var stuff:Array = {thing1, thing2, thing3, …};
for (var key:type in stuff) {
 //use key as index
 //get data with stuff[key]
}

  FlashVars are a way for us to load a flash movie with
parameters

  The format is the same as that for HTML query strings
  You can also just add a query string to the end of the

data attribute

Syntax:

<div>
<object type=“application/x-shockwave-flash” data=“yourfile.swf”
 width=“550” height=“400” >
 <param name=“yourfile” value=“yourfile.swf” />
 <param name=“FlashVars” value=“key=value&key=value…” />
</object>

</div>

  You can treat the params object as if it were an
associative Array

Syntax:

import flash.display.LoaderInfo;
…
var params:Object = LoaderInfo(this.root.loaderInfo).parameters;
for (var key:String in params) {

//do stuff with the keys of the FlashVars
//value = params[key]

}

  Events are flags that are raised by certain objects for
different purposes

  In many cases we want something to happen when
this event occurs, some such events may include
  A button being clicked

  The user pressing a key on the keyboard
  A picture having finished loading

  A timer going off

  When we use addEventListener we are saying that we
wish for the listener function to be executed when
the given type of event occurs

  The name of the listener function must exactly match
the function name given to addEventListener()

  The listener function must take a single parameter of
the same type as that specified when you used
addEventListener()

  The parameter contains valuable information about the
event that one might want to use

Syntax:

public function listener(ev:Type):void {
 //do stuff
}

  The Event parameter stores valuable data
  target and currentTarget can differ when the same event

is being listened for by multiple things

Syntax:
public function listener(ev:Type):void {
 //ev can be very useful
}

Fields

ev.target The object that started the event.

ev.type Contains metadata about the sound such as artist,
duration, title, etc.

ev.currentTarget The object that is currently responding to the event

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/events/Event.html

Syntax:

import flash.display.Loader;
import flash.display.Bitmap;
…
var loader:Loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, loaded);
loader.load(“myimage.jpg”);
…
public function loaded(e:Event):void {

var img:Bitmap = new Bitmap(e.target.content.bitmapData);
addChild(img);

}

  Using the embed command is a shortcut for loading a
resource and responding to it’s load complete event

  This command must be placed in the fields area of your
class

  In practice it would be better style to initialize name2 in
the constructor

Syntax:

[Embed(source=“/filename.ext”)]
private var name1:Class;
private var name2:Type = new name1() as Type;

Syntax:

import flash.media.Sound;
…
[Embed(source=“/filename.mp3”)]
private var name1:Class;
private var name2:Sound = new name1() as Sound;

Functions/Fields

sound.play(); Plays the mp3, returns a SoundChannel object which
could be used to tinker with the sound

sound.id3 Contains metadata about the sound such as artist,
duration, title, etc.

sound.length Returns the length of the mp3

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/media/Sound.html

Syntax:

import flash.display.Bitmap;
…
[Embed(source=“/filename.jpg”)] //also png or gif
private var name1:Class;
private var name2:Bitmap = new name1() as Bitmap;

Functions

pic.getBounds(obj:DisplayObject) Returns a Rectangle object that
defines the area of pic relative to obj

pic.hitTestObject(obj:DisplayObject); Determines if pic is intersecting the
given DisplayObject

pic.hitTestPoint(x:Number, y:Number); Determines if pic intersects (x, y)

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/Bitmap.html

  In all games it is necessary to have a game loop

  A game loop is some logic that is performed every so
often to maintain the game environment

  Things that need to happen regularly should be in
the game loop

  Ex)
  Moving things that are not user-controlled
  Detecting collisions

  A game loop for pong might only move the ball

  We want our ball to move in a random direction

  One approach is to store the direction of the ball in
a Point object

  The x and y fields of the Point will represent the
direction that the ball will move in

  When using a direction vector the Point must be
normalized to be length one, otherwise speed will
vary

Syntax:

import flash.geom.Point;
…
var name:Point = new Point(x:Number, y:Number);

Functions

Point.distance(p1:Point, p2:Point); Returns the distance between the two points

Point.polar(len:Number, angle:Number); Returns a Point with cartesian coordinates,
where angle is in radians

p1.add(p2:Point); Add the coordinates of p2 to p1

p1.offset(dx:Number, dy:Number); Offset p1 by dx and dy

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/geom/Point.html

  In games it is often important to know when objects
on the screen are touching

  Even the simplest games need to respond to objects
colliding with either other objects or specific points

  Examples
  Pong – ball bounce

  Worm – eating an apple

  Galaga – bullets hitting enemies
  Halo – pwning newbs

  If the rectangle that surrounds s1 intersects the
rectangle that contains s2, then hitTest will return
true, otherwise it returns false

  This can be called on any DisplayObject

Syntax:
var s1:Shape;
var s2:Shape;
…
s1.hitTestObject(s2);

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/DisplayObject.html#hitTestObject()

  If the rectangle that surrounds s1 overlaps or intersects
the point specified

  You can supply a third optional boolean parameter for
whether to check if the actual pixels of the object are
touching instead of just the bounding box

  This can called on any DisplayObject

Syntax:

var s1:Shape;
…
s1.hitTestPoint(x, y);

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/DisplayObject.html#hitTestPoint()

  There is also a KEY_UP event that you can use

Syntax:
import flash.events.*;
…
stage.addEventListener(KeyboardEvent.KEY_DOWN, listener);
…
public function listener(ev:KeyboardEvent):void {
 //respond to user action
}

  KeyboardEvents have tons of useful information in
them

Fields

ev.charCode The ASCII value of the character that was pressed, all
modifier keys have a keyCode of 0

ev.keyCode A numeric code for the which button on the keyboard was
pressed

ev.keyLocation Where the key is that was pressed

ev.shiftKey Boolean for whether the shift key was being pressed

ev.altKey Boolean for whether the alt key was being pressed

ev.ctrlKey Boolean for whether the control key was being pressed

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/events/KeyboardEvent.html

key keyCode charCode

w 119 87

a 97 65

s 115 83

d 100 68

space 32 32

up 0 38

left 0 37

right 0 39

down 0 40

  The Keyboard class contains constants for a lot of
these so that we do not have to memorize the
numbers More: http://people.uncw.edu/tompkinsj/112/flashactionscript/keycodes.htm

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/ui/Keyboard.html

  The KEY_DOWN event is fired once and then after a
pause is fired regularly as we would expect, but the
delay creates for a bad user experience

  Pressing a different key will overshadow a previous
key that is still being pressed meaning that holding
down two keys will only register one KEY_DOWN
event

  We can fix this issue by using the KEY_DOWN and
KEY_UP events

  The idea is to key track of which keys are down and
then update in the game loop

Syntax:
import flash.events.*;
…
var keysPressed:Array = [];
stage.addEventListener(KeyboardEvent.KEY_DOWN, downListener);
stage.addEventListener(KeyboardEvent.KEY_UP, upListener);
…
public function downListener(ev:KeyboardEvent):void {
 keysPressed.push(ev.charCode);
}
public function upListener(ev:KeyboardEvent):void {
 removeKey(keysPressed, ev.charCode);
}
public function gameLoop():void {
 for (var key:int in keysPressed) {
 //respond to key being down
 }
}
//You need to write a removeKey function as well

  Game programming can get complex and there can
be lots of subtle bugs associated with it, like the
KEY_DOWN event issues

  There are many libraries that help us with Flash
game programming

  Ex)
  Flixel with the FlashDevelop IDE

  FlashPunk
  APE (Actionscript Physics Engine)

