
Roy McElmurry

More: Constants

  Constants cannot be changed after they are
initialized and must be initialized when declared

Syntax:

private const NAME:type = value;

More: http://ragona.com/blog/as3-casting-vs-typevar/

  There is also a more Java-like syntax

(int)(num), but the former way is better for several
subtle reasons

Syntax:

var num:Number = 23.5;

var newNum:int = num as int;

More: Default Parameters

  If you make default a parameter, all parameters
thereafter must also be defaulted

  The only way to give a value to the nth defaulted
parameter is to give a value to all the preceding
parameters as well

Syntax:

public function name(param1:type = value, …) {}

  The stage is an object that stores all of the items that
will be displayed on the screen

  When you run your program, your class is
instantiated and added as the first child of the stage
object

  The stage object can be referenced by any
DisplayObject that is on the display list

  The stage contains some very useful fields that we
can alter

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/Stage.html

  Some of these fields are the same ones we are
setting in the SWF command, but there are many
others that we can set manually

Field

stage.stageHeight
 Height of the flash movie

stage.stageWidth
 Width of the flash movie

stage.frameRate
 Frame rate of the flash movie

stage.scaleMode
 How the movie reacts when resized

stage.quality
 The quality setting of the movie

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/Stage.html

  An object that can hold things as children for
displaying on the screen

  Examples: Stage, Sprite, MovieClip

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/DisplayObjectContainer.html

  An object that can be displayed on the screen

  Anything inheriting from this can be drawn onto the
screen if added to a DisplayObjectContainer

  Examples: Shape, TextField, Sprite

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/DisplayObject.html

Stage

Sprite(this)

Children

  The display list is simply a list of the things that will
be displayed on the screen

  Using the addChild() is one way to add something to
the display list

  When children are added to the same
DisplayObjectContainer, they are automatically assigned
depths starting at 0

  The order in which things are drawn on screen
cooresponds to the depths of their parents

  An instance of your class is the first child of stage
with a depth of 0

More: http://www.republicofcode.com/tutorials/flash/as3displaylist/

  These functions allow us to manipulate the order in
which things are draw to the screen by manipulating
the depth of children on DisplayObjectContainer’s

Functions

cont.addChildAt(obj:DisplayObject, depth:int)
 Add a child at the given depth between 0
and cont.numChildren

cont.setChildIndex(obj:DisplayObject, depth:int)
 Set the depth of a child anywhere from 0
to cont.numChildren exclusive

cont.getChildIndex(obj:DisplayObject)
 Returns the depth of the DisplayObject

cont.swapChildrenAt(depth1:int, depth2:int)
 Swaps the children at depth1 and depth2

cont.removeChild(obj:DisplayObject)
 Removes obj from cont and shifts deeper
children down

Syntax:

import flash.geom.Point;

…

var name:Point = new Point(x:Number, y:Number);

Functions

Point.distance(p1:Point, p2:Point);
 Returns the distance between the two points

Point.polar(len:Number, angle:Number);
 Returns a Point with cartesian coordinates,
where angle is in radians

p1.add(p2:Point);
 Add the coordinates of p2 to p1

p1.offset(dx:Number, dy:Number);
 Offset p1 by dx and dy

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/geom/Point.html

Syntax:

import flash.utils.Timer;

…

var name:Timer = new Timer(delay:Number, repeats:int = 0);

Functions

timer.start();
 Starts the timer

timer.stop();
 Stops the timer

timer.reset()
 Resets the timer

timer.addEventListener(type:String, listener:Function);
 Registers timer for an event

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/utils/Timer.html

  Events are flags that are raised by certain objects for
different purposes

  In many cases we want something to happen when
this event occurs, some such events may include

  A button being clicked

  The user pressing a key on the keyboard

  A picture having finished loading

  A timer going off

  When we use addEventListener we are saying that
we wish for the listener function to be executed
when the given type of event occurs

  The TimerEvent.TIMER event happens when the timer
reaches the time delay it was given

  The TimerEvent.TIMER_COMPLETE event happens
when the timer has wrung the number of times specified

Syntax:

import flash.events.TimerEvent.*;

timer.addEventListener(TimerEvent.TIMER, listener);

timer.addEventListener(TimerEvent.TIMER_COMPLETE, listener2);

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/events/TimerEvent.html

  The name of the listener function must exactly match
the function name given to addEventListener()

  The listener function must take a single parameter of
the same type as that specified when you used
addEventListener()

  The parameter contains valuable information about the
event that one might want to use

Syntax:

public function listener(ev:Type):void {

//do stuff

}

  Events are essential to any interactive flash movies

  We can use a Timer to animate things rather easily
by listening for the TimerEvent.TIMER event

  There are also events for mouse clicks and keyboard
strokes that can used to create interactive games

  Many more events are also at your disposal

Syntax:

import flash.display.Loader;

import flash.display.Bitmap;

…

var loader:Loader = new Loader();

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, loaded);

loader.load(“myimage.jpg”);

…

public function loaded(e:Event):void {

var img:Bitmap = new Bitmap(e.target.content.bitmapData);

addChild(img);

}

  Using the embed command is a shortcut for loading a
resource and responding to it’s load complete event

  This command must be placed in the fields area of your
class

  In practice it would be better style to initialize name2
in the constructor

Syntax:

[Embed(source=“/filename.ext”)]

private var name1:Class;

private var name2:Type = new name1() as Type;

Syntax:

import flash.media.Sound;

…

[Embed(source=“/filename.mp3”)]

private var name1:Class;

private var name2:Sound = new name1() as Sound;

Functions/Fields

sound.play();
 Plays the mp3, returns a SoundChannel object which
could be used to tinker with the sound

sound.id3
 Contains metadata about the sound such as artist,
duration, title, etc.

sound.length
 Returns the length of the mp3

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/media/Sound.html

Syntax:

import flash.display.Bitmap;

…

[Embed(source=“/filename.jpg”)]

//also png or gif

private var name1:Class;

private var name2:Bitmap = new name1() as Bitmap;

Functions

pic.getBounds(obj:DisplayObject)
 Returns a Rectangle object that
defines the area of pic relative to obj

pic.hitTestObject(obj:DisplayObject);
 Determines if pic is intersecting the
given DisplayObject

pic.hitTestPoint(x:Number, y:Number);
 Determines if pic intersects (x, y)

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/Bitmap.html

  In games it is often important to know when objects
on the screen are touching

  Even the simplest games need to respond to objects
colliding with either other objects or specific points

  Examples

  Pong – ball bounce

  Worm – eating an apple

  Galaga – bullets hitting enemies

  Halo – pwning newbs

