
Roy McElmurry

ActionScript: an object-oriented programming
language similar to JavaScript

MXML: A flavor of XML that helps simplify user
interface construction code

Flash: An authoring program that assists the user in
creating graphical ActionScript code

Flex: An interactive development environment and a
software development package that extends
ActionScript with MXML

More: http://en.wikipedia.org/wiki/ActionScript

  An object oriented scripting language

  Very similar to JavaScript, reminiscent of Java
  The Adobe Flash program writes this code for you
  A .swf file is the compiled version of Actionscript

What’s cool about Flash:
  It is installed on almost every computer
  Appears the same on all machines

  We can write games and small programs easily
  Flash allows us to put video on the web easily

  Flash can be run on the desktop, outside of the browser

Visit the following webpage and follow the instructions

Coming Soon

What you need to do

Download the Flex SDK
Install the StandAlone Flash player
Start writing some ActionScript Files

  There are many types of variables one can use
  int, Number, String, Boolean, Object

  The value you give you variable must be consistent with
the type you specified

  The name of your variable can be anything that starts
with a letter or underscore, with a few exceptions

  Specifying type is not mandatory, but is good practice

Syntax:

var name:type = value;

  Comments are very important: leave them for
yourself and for others

  Don’t have unnecessary comments clutter your code

  You can also use them to temporarily “turn off ”
some code

Syntax:

//One Line
/*
 Multiline
*/

  Arrays are used to store multiple values that we
know are related or have meaning together

  Arrays are also useful in junction with for loops

Syntax:

var name:Array = [value1, value2,…,valuen];
var name:Array = new Array(value1, value2, …, valuen);

  The brackets allow you to grab just one of the
values stored in an array

  Indexing starts at zero, so the first value in the array
is at index zero

  The first piece of syntax simply access the index
  The second piece of syntax is for reassigning the

value of the array at the given index

Syntax:

name[index]
name[index] = value;

  If statements are used to conditionally run some
code

  These can be done in combination with else if and
else statements to run different code based on
mutually exclusive tests

Syntax:

if (condition) {
 //statements
}

  You can have as many else if statements as you want

  You may or may not include the else case

Syntax:

if (condition) {
 //statements
} else if (condition) {
 //statements
} else {
 //statements
}

  for loops are used to do similar code a definite
number of times

  Typically we define a new loop variable and have
our condition and update based on it

Syntax:

for (declaration; condition; update) {
 //Statements
}

  Notice that we have a variable i which we could use
during the statements section, this is common
practice

  Typically the loop variable is called i, j, or k

Syntax:

for (var i:int = 0; i < condition; i++) {
 //Statements
}

  while loops are used for executing similar code when
we don’t know how many times we will do it

  For instance we may want to grab user input until
they give us a certain piece of information

Syntax:

while (condition) {
 //statements
}

  A function is used to capture a procedure that you
may want to use several times

  With functions you can reuse code and make it
much easier to read

Syntax:

function name(parameter1:type,…,parametern:type):type {
 //statements
}

  To use a function you simply call its function name,
and give it whatever parameters it needs

  If the function has a return type other than void,
you can capture that returned value by assigning the
function call to a variable

Syntax:

name(value1, …, valuen);
var name:type = functionName(value1, …, valuen);

  There are many functions you may want to use that
you didn’t write yourself

  To do so, you must use the dot notation, such as
Math.sqrt(4);

Math Function

Math.sqrt(number); Square Root

Math.abs(number); Absolute Value

Math.max(number1, number2); Maximum, there is also a min

Math.round(number); Round

Math.E, Math.PI E and Pi values

  Actionscript files are saved with an “as” extension as in
“HelloWorld.as”

Template:

package {
import flash.display.Sprite;

[SWF(backgroundColor="#ffffff", frameRate="24", width="550”, height="400")]
public class NAME extends Sprite {
 //STUFF HERE
}

}

  There are three kinds of text fields static, dynamic and input

Example:

import flash.text.*;
…
var myTextField:TextField = new TextField();
myTextField.text = “Hello World”;
myTextField.x = 100;
myTextField.y = 100;

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/text/TextField.html

  You choose to have a dynamic or input text box by changing
the type field of your TextField variable

Example:

var myTextField:TextField = new TextField();
myTextField.text = “Hello World”;

myTextField.type = TextFieldType.INPUT;
myTextField.border = true;

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/text/TextFieldType.html

  The graphics object has many kinds of shapes we can draw

Example:

import flash.display.*;
…
var myShape:Shape = new Shape();
myShape.graphics.beginFill(0x000000);
myShape.drawCircle(100, 100, 50);

More: http://www.adobe.com/livedocs/flex/2/langref/flash/display/Shape.html

  A Lot of the graphics methods are just like with the
graphics object that we saw in the DrawingPanel

Graphics Function

beginFill(color:uint) Sets the “paintbrush” color

drawCircle(x:Number, y:Number, radius:Number) Draws a circle

drawRect(x:Number, y:Number,
 width:Number, height:Number)

Draws a Rectangle

moveTo(x:Number, y:Number) Moves the “paintbrush” to (x,y)

lineTo(x:Number, y:Number) Draws line to (x,y)

clear() Erases everything

More: http://www.adobe.com/livedocs/flash/9.0/ActionScriptLangRefV3/flash/display/Graphics.html

  Objects are not by default displayed on the screen, instead we
must add them to the screen by calling addChild()

  You can actually add things as the children of objects other
than the screen

Syntax:

addChild(SOMETHING);

More: http://www.flashandmath.com/intermediate/children/index.html

package {
import flash.display.Sprite;
import flash.display.*;

[SWF(backgroundColor="#ffffff", frameRate="24", width="550”, height="400")]
public class Shapes extends Sprite {
 public function Shapes():void {
 var myShape:Shape = new Shape();
 myShape.graphics.beginFill(0x000000); //black
 myShape.graphics.drawCircle(50, 75, 25);
 myShape.graphics.drawRect(150, 150, 100, 75);

 addChild(myShape);
 }
}

}

  There are many other parameters you can pass to your object
tag with an inner param tag

  IE has problems with the object tag, click the more link for tips
on how to embed flash in IE

Syntax:

<div>
<object type="application/x-shockwave-flash” data=“yourfile.swf”
 width=“550” height=“400” >
 <param name=“yourfile” value=“yourfile.swf” />
</object>

</div>

More: http://www.w3schools.com/flash/flash_inhtml.asp

More: http://kb2.adobe.com/cps/127/tn_12701.html

  Shapes have many properties including the above

  Each of the above is with respect to the shapes parent

Shape Properties

shape.x X coordinate w.r.t. its parent

shape.y Y coordiante w.r.t. its parent

shape.rotation Rotation w.r.t. its parent

shape.width Width w.r.t. its parent

shape.height Height w.r.t. its parent

More: http://www.adobe.com/livedocs/flex/2/langref/flash/display/Shape.html

  So far we only know of Shape and TextField objects, but
actually we also know about the Sprite class which we extend.

  We can instantiate more sprites and add children to them to
create more complicated designs

Syntax:

sprite.addChild(SOMETHING);

More: http://www.flashandmath.com/intermediate/children/index.html

