
Ruby on Rails

CSE 190M, Spring 2009

Week 7

Customizing Our Views

• In our blog example, our entries were ordered from

oldest to newest

• We can order them newest to oldest if we wish• We can order them newest to oldest if we wish
• @entries = Entry.all.reverse!

• Maybe we only want to show the 5 most recent

entries
• @entries = Entry.all.reverse!.slice(0,4)

Adding Additional Views

• Last week we showed how Scaffold generates a

bunch of standard views and a template layout

• If we wanted additional actions we:• If we wanted additional actions we:
– Add the action in our controller

– Create the corresponding view

– Update our routes.rb file

• map.resources :obj_plural => { :action => method }

• e.g. map.resources :entries => { :preview => get }

Templates with Layouts

• Scaffold creates a Layout that works as a template for

our objects
layouts/entries.html.erb

• This template displays the same thing for each of the

actions for that object, and then yields to the actions for that object, and then yields to the

corresponding view to display the unique content

• If we want, we can make one single template to be

used by all objects by making one named

"layouts/application.html.erb"

Partial Layouts

• Sometimes we may want the same bit of code to

show up in multiple templates (e.g. navigation bar)

• We can display partial pages in our templates or

views, and they are called "partials"

• Partials can be in any of the views or layouts folders

• By convention, they start with an underscore
views/layouts/_top_nav.html.erb

• We can render our partial in a template wherever we

want it to be displayed
<%= render(:partial => "layouts/top_nav") %>

Rails on Webster

• In your public_html directory, make a folder for your Ruby apps

/home/rctucker/ruby_apps

• Create your Rails app in this folder

rails –d mysql my_app

• In your public_html folder, make a symlink from the public folder of your

app to a folder with the name of your appapp to a folder with the name of your app

ln -s ruby_apps/my_app/public my_app

• Create/modify .htaccess file in your public_html folder. Add the following

line (using your username and application name instead)

RailsBaseURI /rctucker/my_app

• Add the following line to your environment.rb file

config.action_controller.relative_url_root = "/rctucker/my_app"

• Restart your app

touch my_app/tmp/restart.txt

• View app at webster.cs.washington.edu/username/app_name

"Restarting" Your Rails App

• Instead of using WEBrick, we are using a plugin so

that Apache can run your Rails apps

• Unlike when you run your application locally, when

your application is on Webster, it is always running

• If you make changes to your app that require you to

restart it (such as changes to routes.rb or anything

else in the config folder) you must restart your

application

• Restart your app on Webster by modifying a file

named restart.txt in your tmp folder
touch my_app/tmp/restart.txt

Other Resources

• At the end of the quarter, Webster will disappear,

but…

• As students, you have web space on a server called

Dante through your UW accounts
– dante.u.washington.edu

• Dante already has Ruby and Rails installed for you

(MySQL is not installed)

• You can find documentation on how to get your Rails

applications up and running on Dante here:
http://www.washington.edu/computing/web/publishing/rails.html

