
Ruby (on Rails)

CSE 190M, Spring 2009

Week 4



Constructors

• Writing a new class is simple!

• Example:
class Point

end

• But we may want to initialize state (constructor)• But we may want to initialize state (constructor)
– initialize()

– Example:
class Point

def initialize(x, y)

@x = x # the convention for instance variables

@y = y # is @parameter_name

end

end



Instantiating New Objects

• We instantiate a new object by calling the 

new() method on the class we want to 

instantiate

• Example• Example

p = Point.new(2,3

• How do we get the @x of p?

p.@x?

p.x?



Accessing State

• Instance variables are private by default

• The instance variables for our Point class are

@x, @y

• To access them, we must write methods that • To access them, we must write methods that 

return their value

– Remember "encapsulation" from CSE 142/143



Accessing State

class Point

def initialize(x, y)

@x = x

@y = y

end

def get_x

@x

end

end

p = Point.new(2, 3)

puts p.get_x # get value of x by calling a method



Accessing State

class Point

def initialize(x, y)

@x = x

@y = y

end

def x

@x

end

end

p = Point.new(2, 3)

puts p.x # get value of instance variable by calling a method



Accessing State

• We do not need to write these methods by 
hand

• Example:
class Pointclass Point

attr_reader :x, :y

def initialize(x, y)

@x = x

@y = y

end

end

• What if we want to assign values?



Accessing State

• To assign a value to @x, we can write a 

method

• Example:

def set_x(x)def set_x(x)

@x = x

end

p.set_x(7)

• Similarly we can use attr_writer

attr_writer :x, :y



Accessing State

• If we want to read and write all of our instance 
variables, we can combine attr_reader and 
attr_writer to simplify our class, replacing them 
with attr_accessor

class Point

attr_accessor :x, :y

def initialize(x, y)

@x = x

@y = y

end

end



Objects in erb

• Objects work as expected in erb

• We can include the class directly in the erb file 
within the code tags <% … %>

• We can also save an external .rb file (Point.rb) • We can also save an external .rb file (Point.rb) 
and then require the class file in our .erb file 
(plot_points.erb) 

require 'Point.rb'

p = Point.new(3,5)

• The files should be in the same folder, or 
specify the path to the class file



Inheritance

• Ruby supports single inheritance

• This is similar to Java where one class can 

inherit the state and behavior of exactly one inherit the state and behavior of exactly one 

other class

• The parent class is known as the superclass, 

the child class is known as the subclass



Inheritance



Inheritance



Public and Private Methods

• Methods are public by default

• Private methods are declared the same way as 

public methods (no keyword at the beginning 

of method like Java)of method like Java)

• Private methods are designated by an "area" 

of private methods

• They keyword "private" designates this area

• Any methods after "private" are private 

methods



Public and Private Methods

• Public – any class can use the methods

• Private – only this particular object can use 

these methods

• There is a middle ground… methods can be 

"protected"

• Protected – only objects of this class or its 

subclasses can use these methods



Modifying Class Behavior

• Ruby allows us to add or modify functionality 

to ANY class

• This includes built-in classes like Fixnum and 

StringString

• Lets allow Strings to add any object to it 

without having to say to_s

"hello" + 3 # instead of "hello" + 3.to_s


