a Ruby (on Rails)

CSE 190M, Spring 2009
Week 4



Constructors

 Writing a new class is simple!

e Example:

class Point
end

 But we may want to initialize state (constructor)
— initialize()
— Example:
class Point
def initialize(x, y)
@x = X # the convention for instance variables
@y=y #is @parameter_name
end
end



Instantiating New Objects

 We instantiate a new object by calling the

new() method on the class we want to
Instantiate

e Example
p = Point.new(2,3
e How do we get the @x of p?

p.@x?
p.X?



Accessing State

e Instance variables are private by default
e The instance variables for our Point class are
@x, @y

e To access them, we must write methods that
return their value

— Remember "encapsulation" from CSE 142/143



Accessing State

class Point
def initialize(x, y)
@x = X
@y =y
end

def get_x
@x
end
end

p = Point.new(2, 3)
puts p.get_x # get value of x by calling a method



Accessing State

class Point
def initialize(x, y)
@x = X
@y =y
end
def x
@x
end
end

p = Point.new(2, 3)
puts p.x # get value of instance variable by calling a method



Accessing State

e We do not need to write these methods by
hand

e Example:
class Point
attr_reader :x, :y
def initialize(x, y)
@x = X
@y =y
end
end

e What if we want to assign values?



Accessing State

e To assigh a value to @x, we can write a
method

e Example:
def set_x(x)
@Xx =X
end

p.set_x(7)

e Similarly we can use attr_writer
attr_writer :x, :y



Accessing State

* |f we want to read and write all of our instance
variables, we can combine attr_reader and
attr_writer to simplify our class, replacing them
with attr_accessor

class Point
attr_accessor :x, :y
def initialize(x, y)
@x = X
@y =y
end
end



Objects in erb

Objects work as expected in erb

We can include the class directly in the erb file
within the code tags <% ... %>

We can also save an external .rb file (Point.rb)
and then require the class file in our .erb file
(plot_points.erb)

require 'Point.rb'

p = Point.new(3,5)
The files should be in the same folder, or
specify the path to the class file



Inheritance

 Ruby supports single inheritance

 This is similar to Java where one class can
inherit the state and behavior of exactly one
other class

 The parent class is known as the superclass,
the child class is known as the subclass



Inheritance

Foo

method1
method2
toString

£|L

Bar

(method1)
method?2
(toString

Baz

rmethod1
{method?2)
toString

I

Mumble

(rmethod1)
method?2
{toString)




Inheritance

haz 1
foo 2
haz

Foo
rmethod fon 1
method: foo 2
toString foo
Bar Baz
(rnethodf) fon 1 method
method: har 2 {rmethods)
(tositring) foo toString
Mumble
frmethoc])
methodz
ftostring)

haz 1
mumble 2
haz




Public and Private Methods

Methods are public by default

Private methods are declared the same way as
public methods (no keyword at the beginning
of method like Java)

Private methods are designated by an "area"
of private methods

They keyword "private" designates this area

Any methods after "private" are private
methods



Public and Private Methods

e Public —any class can use the methods

* Private — only this particular object can use
these methods

 There is a middle ground... methods can be
"protected"

* Protected — only objects of this class or its
subclasses can use these methods



Modifying Class Behavior

e Ruby allows us to add or modify functionality
to ANY class

* This includes built-in classes like Fixnum and
String

e Lets allow Strings to add any object to it

without having to say to s
"hello" + 3 # instead of "hello" + 3.to_s



