
Ruby (on Rails)

CSE 190M, Spring 2009

Week 2

Arrays

• Similar to PHP, Ruby arrays…

– Are indexed by zero-based integer values

– Store an assortment of types within the same

arrayarray

– Are declared using square brackets, [], elements

are separated by commas

• Example:
a = [1, 4.3, "hello", 3..7]

a[0] � 1

a[2] � "hello"

Arrays

• You can assign values to an array at a

particular index, just like PHP

• Arrays increase in size if an index is specified

out of bounds and fill gaps with nilout of bounds and fill gaps with nil

• Example:
a = [1, 4.3, "hello", 3..7]

a[4] = "goodbye"

a � [1, 4.3, "hello", 3..7, "goodbye"]

a[6] = "hola"

a � [1, 4.3, "hello", 3..7, "goodbye", nil, "hola"]

Negative Integer Index

• Negative integer values can be used to index

values in an array

• Example:• Example:
a = [1, 4.3, "hello", 3..7]

a[-1] � 3..7

a[-2] � "hello"

a[-3] = 83.6

a � [1, 83.6, "hello", 3..7]

Hashes

• Arrays use integers as keys for a particular

values (zero-based indexing)

• Hashes, also known as "associative arrays",

have Objects as keys instead of integershave Objects as keys instead of integers

• Declared with curly braces, {}, and an arrow,

"=>", between the key and the value

• Example:
h = {"greeting" => "hello", "farewell" =>"goodbye"}

h["greeting"] � "hello"

Sorting

a = [5, 6.7, 1.2, 8]

a.sort � [1.2, 5, 6.7, 8]

a � [5, 6.7, 1.2, 8]

a.sort! � [1.2, 5, 6.7, 8]

a � [1.2, 5, 6.7, 8]a � [1.2, 5, 6.7, 8]

a[4] = "hello" � [1.2, 5, 6.7, 8, "hello"]

a.sort � Error: comparison of Float with

String failed

h = {"greeting" => "hello", "farewell" =>"goodbye"}

h.sort � [["farewell", "goodbye"], ["greeting", "hello"]]

Blocks

• Blocks are simply "blocks" of code

• They are defined by curly braces, {}, or a

do/end statementdo/end statement

• They are used to pass code to methods and

loops

Blocks

• In Java, we were only able to pass parameters

and call methods

• In Ruby, we can pass code through blocks

• We saw this last week, the times() method • We saw this last week, the times() method

takes a block:
3.times { puts "hello" } # the block is the code in the {}

Blocks and Parameters

• Blocks can also take parameters

• For example, our times() method can take a

block that takes a parameter. It will then pass

a parameter to are blocka parameter to are block

• Example
3.times {|n| puts "hello" + n.to_s}

• Here "n" is specified as a parameter to the

block through the vertical bars "|"

Yield

• yield statements go hand-in-hand with blocks

• The code of a block is executed when a yield

statement called

Yield

• A yield statement can also be called with

parameters that are then passed to the block

• Example:
3.times { |n| puts n}3.times { |n| puts n}

• The "times" method calls yield with a

parameter that we ignored when we just

printed "hello" 3 times, but shows up when

we accepted a parameter in our block

Yield Examples

Code:

def demo_yield

puts "BEGINNING"

yield

puts "END"

end

Output:

BEGINNING

hello

END

demo_yield { puts "hello" }

def demo_yield2

puts "BEGINNING"

yield

puts "MIDDLE"

yield

puts "END"

end

demo_yield2{ puts "hello" }

BEGINNING

hello

MIDDLE

hello

END

Parameters, Blocks, and Yield

• Example:
def demo_yield3

yield 2

yield "hello"

yield 3.7

end

demo_yield3 { |n| puts n * 3}

• "n" is the value passed by yield to the block

when yield is called with arguments

Iterators

• An iterator is simply "a method that invokes a
block of code repeatedly" (Pragmatic
Programmers Guide)

• Iterator examples: Array.find, Array.each, • Iterator examples: Array.find, Array.each,
Range.each

• Examples:
[1,2,3,4,5].find{ |n| Math.sqrt(n).remainder(1)==0} # finds perfect square

[2,3,4,5].find{ |n| Math.sqrt(n).remainder(1)==0} # finds perfect square

[1,2,3,4,5].each { |i| puts i } #prints 1 through 5

[1,2,3,4,5].each { |i| puts i * i } #prints 1 squared, 2 squared…, 5squared

(1..5).each{ |i| puts i*i } #prints 1 squared, 2 squared…, 5squared

Iterators and Loops

• Common to use iterators instead of loops

• Avoids off-by-one (OBO) bugs

• Built-in iterators have well defined behavior

• Examples• Examples
0.upto(5) { |x| puts x } # prints 0 through 5

0.step(10, 2) { |x| puts x } # 0, 2, 4, 6, 8, 10

0.step(10,3) { |x| puts x } # 0, 3, 6, 9

for…in

• Similar to PHP's foreach:

– PHP

$prices = array(9.00, 5.95, 12.50)

foreach($prices as $price){

print "The next item costs $price\n"print "The next item costs $price\n"

}

– Ruby

prices = [9.00, 5.95, 12.50]

for price in prices

puts "The next item costs " + price.to_s

end

for...in

• Previous example
prices = [9.00, 5.95, 12.50]

for price in prices

puts "The next item costs " + price.to_s

end

• Can also be written
prices = [9.00, 5.95, 12.50]

prices.each do |price|

puts "The next item costs " + price.to_s

end

Strings

• Strings can be referenced as Arrays

• The value returned is the a Integer equivalent

of the letter at the specified index

• Example:• Example:
s = "hello"

s[1] � 101

s[2] � 108

s[1].chr � "e"

s[2].chr � "l"

More Strings

• chomp – returns a new String with the trailing

newlines removed

• chomp! – same as chomp but modifies • chomp! – same as chomp but modifies

original string

More Strings

• split(delimiter) – returns an array of the

substrings created by splitting the original

string at the delimiter

• slice(starting index, length) – returns a

substring of the original string beginning at

the "starting index" and continuing for

"length" characters

Strings Examples

s = "hello world\n"

s.chomp � "hello world"

s � "hello world\n"

s.chomp! � "hello world"

s � "hello world"s � "hello world"

s.split(" ") � ["hello", "world"]

s.split("l") � ["he", "", "o wor", "d"]

s.slice(3,5) � "lo wo"

s � "hello world"

s.slice!(3,5) � "lo wo"

s � "helrld"

Iterating over String characters

Code

"hello".each {|n| puts n}

"hello".each_byte {|n| puts n}

Output

"hello"

104

101

108

"hello".each_byte {|n| puts n.chr}

108

108

111

h

e

l

l

o

Files as Input

• To read a file, call File.open(), passing it the

the path to your file

• Passing a block to File.open() yields control to

the block, passing it the opened filethe block, passing it the opened file

• You can then call gets() on the file to get each

line of the file to process individually

– This is analogous to Java's Scanner's .nextLine()

Files as Input

• Example (bold denotes variable names)
File.open("file.txt") do |input| # input is the file passed to our block

while line = input.gets # line is the String returned from gets()

process line as a String within the loop

tokens = line.split(" ")tokens = line.split(" ")

end

end

Output to Files

• To output to a file, call File.open with an

additional parameter, "w", denoting that you

want to write to the file

File.open("file.txt", "w") do |output|

output.puts "we are printing to a file!"

end

Writing from one file to another

• If a block is passed, File.open yields control to

the block, passing it the file.

• To write from one file to another, you can nest • To write from one file to another, you can nest

File.open calls within the blocks

Writing from one file to another

File.open("input_file.txt") do |input|

File.open("output_file.txt", "w") do |output|

while line = input.gets

output.puts lineoutput.puts line

end

end

end

