a Ruby (on Rails)

CSE 190M, Spring 2009
Week 2

e Similar to PHP, Ruby arrays...

— Are indexed by zero-based integer values

— Store an assortment of types within the same
array

— Are declared using square brackets, [], elements
are separated by commas

e Example:
a=[1, 4.3, "hello", 3..7]
a[0] -2 1
a[2] > "hello"

* You can assign values to an array at a
particular index, just like PHP

e Arrays increase in size if an index is specified
out of bounds and fill gaps with nil

e Example:
a=1[1, 4.3, "hello", 3..7]
al4] = "goodbye"
a - [1, 4.3, "hello", 3..7, "goodbye"]
a[6] = "hola"

a - [1, 4.3, "hello", 3..7, "goodbye", nil, "hola"]

Negative Integer Index

 Negative integer values can be used to index
values in an array

e Example:
a=[1, 4.3, "hello", 3..7]
al-1] -2 3..7
a[-2] > "hello"
a[-3]=83.6
a > [1, 83.6, "hello", 3..7]

Hashes

e Arrays use integers as keys for a particular
values (zero-based indexing)

* Hashes, also known as "associative arrays”,
have Objects as keys instead of integers

e Declared with curly braces, {}, and an arrow,
"=>" between the key and the value

e Example:
h = {"greeting" => "hello", "farewell" =>"goodbye"}
h["greeting"] - "hello"

Sorting

a=15,6.7,1.2, 8]

a.sort - [1.2, 5, 6.7, 8]

a - 5,6.7,1.2, 8]

a.sort! - 1.2, 5, 6.7, 8]

a - 1.2, 5, 6.7, 8]

a[4] = "hello" - 1.2, 5,6.7, 8, "hello"]

a.sort —> Error: comparison of Float with
String failed

h = {"greeting" => "hello", "farewell" =>"goodbye"}
h.sort -2 [["farewell", "goodbye"], ["greeting", "hello"]]

Blocks

e Blocks are simply "blocks" of code

 They are defined by curly braces, {}, or a
do/end statement

 They are used to pass code to methods and
loops

Blocks

* InJava, we were only able to pass parameters
and call methods

* In Ruby, we can pass code through blocks

e We saw this last week, the times() method

takes a block:
3.times { puts "hello" } # the block is the code in the {}

Blocks and Parameters

e Blocks can also take parameters

e For example, our times() method can take a
block that takes a parameter. It will then pass
a parameter to are block

e Example

3.times {|n| puts "hello" + n.to_s}

e Here "n" is specified as a parameter to the
block through the vertical bars " |"

Yield

e yield statements go hand-in-hand with blocks

e The code of a block is executed when a yield
statement called

Yield

 Avyield statement can also be called with
parameters that are then passed to the block
e Example:
3.times { |n| puts n}

e The "times" method calls yield with a
parameter that we ignored when we just
printed "hello" 3 times, but shows up when
we accepted a parameter in our block

Yield Examples

Code: Output:
def demo_yield
puts "BEGINNING" BEGINNING
vield hello
enzuts END END

demo_yield { puts "hello" }

def demo_yield2

puts "BEGINNING" BEGINNING
yield hello
puts "MIDDLE" MIDDLE
yield hello
puts "END" END

end

demo_yield2{ puts "hello" }

Parameters, Blocks, and Yield

e Example:

def demo_yield3
yield 2
yield "hello"
vield 3.7
end
demo_yield3 { |[n| puts n * 3}

e "n" is the value passed by yield to the block
when yield is called with arguments

lterators

e An iterator is simply "a method that invokes a
olock of code repeatedly” (Pragmatic
Programmers Guide)

e |terator examples: Array.find, Array.each,
Range.each

e Examples:
[1,2,3,4,5].find{ |[n| Math.sgrt(n).remainder(1)==0} # finds perfect square
[2,3,4,5].find{ |n| Math.sqgrt(n).remainder(1)==0} # finds perfect square
[1,2,3,4,5]).each { |i| putsi } #prints 1 through 5
[1,2,3,4,5].each { |i| putsi *i} #prints 1 squared, 2 squared..., 5squared
(1..5).each{ |i| puts i*i} #prints 1 squared, 2 squared..., 5squared

lterators and Loops

Common to use iterators instead of loops
Avoids off-by-one (OBO) bugs
Built-in iterators have well defined behavior

Examples
O.upto(5) { | x| puts x } # prints O through 5
O.step(10, 2) { |x| putsx} #0,2,4,6,8, 10
0.step(10,3) { | x| puts x } #0,3,6,9

e Similar to PHP's foreach:

— PHP
Sprices = array(9.00, 5.95, 12.50)
foreach(Sprices as Sprice){
print "The next item costs Sprice\n"

}
— Ruby
prices = [9.00, 5.95, 12.50]
for price in prices
puts "The next item costs " + price.to_s
end

for...in

* Previous example
prices = [9.00, 5.95, 12.50]
for price in prices
puts "The next item costs " + price.to_s
end

e Can also be written
prices = [9.00, 5.95, 12.50]
prices.each do |price]|
puts "The next item costs " + price.to_s
end

e Strings can be referenced as Arrays

e The va
of the

e Examp

s = "hello"

wn

w unvu O

=

N RPN

e.

.chr
.chr

N2 2 2 Z

Strings

ue returned is the a Integer equivalent
etter at the specified index

101
108

More Strings

e chomp —returns a new String with the trailing
newlines removed

e chomp!—-same as chomp but modifies
original string

More Strings

e split(delimiter) — returns an array of the
substrings created by splitting the original
string at the delimiter

e slice(starting index, length) — returns a
substring of the original string beginning at
the "starting index" and continuing for
"length" characters

Strings Examples

s = "hello world\n"

s.chomp - "hello world"

S - "hello world\n"
s.chomp! - "hello world"

S > "hello world"

s.split(" ") > ["hello", "world"]
s.split("I") - ["he", ", "o wor", "d"]
s.slice(3,5) > "lo wo"

S > "hello world"
s.slice!(3,5) > "lo wo"

S - "helrld"

Iterating over String characters

Code Output

"hello".each {|n| puts n} "hello"

"hello".each_byte {|n| puts n} 104
101
108
108
111

"hello".each_byte {|n| puts n.chr}

c — — o =TT

Files as Input

 To read a file, call File.open(), passing it the
the path to your file

e Passing a block to File.open() yields control to
the block, passing it the opened file

* You can then call gets() on the file to get each
line of the file to process individually

— This is analogous to Java's Scanner's .nextLine()

Files as Input

e Example (bold denotes variable names)

File.open("file.txt") do |input| # input is the file passed to our block
while line = input.gets # line is the String returned from gets()
process line as a String within the loop
tokens = line.split(" ")
end
end

Output to Files

* To output to a file, call File.open with an
additional parameter, "w", denoting that you
want to write to the file

File.open("file.txt", "w") do |output|
output.puts "we are printing to a file!"
end

Writing from one file to another

e |f a block is passed, File.open yields control to
the block, passing it the file.

 To write from one file to another, you can nest
File.open calls within the blocks

Writing from one file to another

File.open("input_file.txt") do |input]
File.open("output_file.txt", "w") do |output]
while line = input.gets
output.puts line
end
end

end

