
Web Programming Step by Step
Chapter 7

JavaScript for Interactive Web Pages

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

7.1: Key JavaScript Concepts

7.1: Key JavaScript Concepts

7.2: JavaScript Syntax
7.3: Program Logic
7.4: Advanced JavaScript Syntax

What is JavaScript? (7.1)

a lightweight programming language (scripting)
used to make web pages interactive

insert dynamic text into HTML (ex: user name)
react to events (ex: page load user click)
get information about a user's computer (ex: browser type)
perform calculations on user's computer (ex: form validation)

a web standard (but not supported identically by all browsers)
NOT related to Java other than by name and some syntactic similarities

 + =
JavaScript

JavaScript vs. Java

interpreted, not compiled
more relaxed syntax and rules

fewer and "looser" data types
variables don't need to be declared
errors often silent (few exceptions)

key construct is the function rather than the class
(more procedural less object-oriented)

contained within a web page and integrates with its HTML/CSS content

JS <3

JavaScript vs. PHP

similarities:
both are interpreted, not compiled
both are relaxed about syntax, rules, and types
both are case-sensitive
both have built-in regular expressions (powerful text
processing)

differences:
JS is less procedural (verb(noun)), more object-oriented (noun.verb())
JS focuses on user interfaces and interacting with a document; PHP is geared toward
HTML output and file/form processing
JS code runs on the client's browser; PHP code runs on the web server

Client-side scripting (7.1.1)

client-side script: code runs in browser after page is sent back from server
often this code manipulates the page or responds to user actions

Why use client-side programming?

PHP already allows us to create dynamic web pages. Why also use a client-side language like
JavaScript?

PHP benefits:
security: has access to server's private data; client can't see source code
compatibility: avoids browser compatibility issues
power: fewer restrictions (can write to files, open connections to other servers,
connect to databases, ...)

JavaScript benefits:
usability: can modify a page without having to post back to the server (faster UI)
efficiency: can make small, quick changes to page without waiting for server
event-driven: can respond to user actions like clicks and key presses

Event-driven programming

most languages' programs start with a main method and run sequentially
JavaScript programs wait for user actions called events and respond to them
event-driven programming: writing programs driven by user events

Buttons: <button>

the most common clickable UI control (inline)

<button>Click me!</button>

button's text appears inside tag; can also contain images
To make a responsive button or other UI control:

choose the control (e.g. button) and event (e.g. mouse click) of interest1.
write a JavaScript function to run when the event occurs2.
attach the function to the event on the control3.

Linking to a JavaScript file: script

<script src="filename" type="text/javascript"></script>

<script src="example.js" type="text/javascript"></script>

script tag should be placed in HTML page's head
script code is stored in a separate .js file
JS code can be placed directly in the HTML file's body or head (like CSS)

but this is bad style (should separate content, presentation, and behavior)

A JavaScript statement: alert

alert("message");

alert("IE6 detected. Suck-mode enabled.");

a JS command that pops up a dialog box with a message

JavaScript functions

function name() {

 statement ;

 statement ;
 ...

 statement ;
}

function myFunction() {

 alert("Hello!");

 alert("How are you?");

}

the above could be the contents of example.js linked to our HTML page
statements placed into functions can be evaluated in response to user events

Event handlers

<element attributes onclick="function();">...

<button onclick="myFunction();">Click me!</button>

JavaScript functions can be set as event handlers
when you interact with the element, the function will execute

onclick is just one of many event HTML attributes we'll use

Document Object Model (DOM) (7.1.4)

a set of JavaScript objects that represent each element on the page

most JS code manipulates elements on an HTML
page
we can examine the state of the elements, e.g.
whether a box is checked
we can change state, e.g. putting text into a div
we can change styles, e.g. make a paragraph red

Accessing elements: getElementById

var name = document.getElementById("id");

<button onclick="myFunction2();">Click me!</button>

replace me

function myFunction2() {

 var span = document.getElementById("output");
 span.innerHTML = "Hello, how are you?";

}

 replace me

document.getElementById returns DOM object for an element with a given id
can change the text inside most elements by setting innerHTML property

7.2: JavaScript Syntax

7.1: Key JavaScript Concepts
7.2: JavaScript Syntax

7.3: Program Logic
7.4: Advanced JavaScript Syntax

Variables and types (7.2.1, 7.2.3)

var name = expression;

var clientName = "Connie Client";

var age = 32;

var weight = 127.4;

variables are declared with the var keyword (case sensitive)
types are not specified, but JS does have types ("loosely typed")

Number, Boolean, String, Array, Object, Function, Null,
Undefined

can find out a variable's type by calling typeof

Number type (7.2.2)

var enrollment = 99;

var medianGrade = 2.8;

var credits = 5 + 4 + (2 * 3);

integers and real numbers are the same type (no int vs. double)
same operators: + - * / % ++ -- = += -= *= /= %=
similar precedence to Java
many operators auto-convert types: "2" * 3 is 6

HTML:
CSS/JS/PHP:
Java/JS/PHP:
PHP:

Comments (same as Java) (7.2.4)

// single-line comment

/* multi-line comment */

identical to Java's comment syntax
recall: 4 comment syntaxes

<!-- comment -->

/* comment */

// comment

comment

DOM object properties (7.2.5)

<div id="main" class="foo bar">
 <p>Hello, very happy to see you!</p>

</div>

var div = document.getElementById("main");

var image = document.getElementById("icon");

tagName: element's HTML tag, capitalized; div.tagName is "DIV"
className: CSS classes of element; div.className is "foo bar"
innerHTML: HTML content inside element; div.innerHTML is "\n
<p>Hello, very happy to ...

src: URL target of an image; image.src is "images/borat.jpg"

DOM properties for other elements

<input id="studentid" type="text" size="7" maxlength="7" />
<input id="freshman" type="checkbox" checked="checked" /> Freshman?

var sid = document.getElementById("studentid");

var frosh = document.getElementById("freshman");

 Freshman?

value: the text in an input control
sid.value could be "1234567"

checked, disabled, readOnly: whether a control is selected/disabled/etc.
frosh.checked is true

Debugging common errors (7.2.6)

JavaScript's syntax is looser than Java's, but its errors are meaner
most errors produce no visible output or error message!

some common error symptoms:
“My program does nothing.” (most errors produce no output)
“It just prints undefined.” (many typos lead to undefined variables)
“I get an error that says, foo has no properties.”

Debugging JS code in Firebug

Firebug JS debugger can set breakpoints, step
through code, examine values (Script tab)
interaction pane for typing in arbitrary JS
expressions (Console tab; Watch tab within Script
tab)

JSLint

JSLint: an analyzer that checks your JS code,
much like a compiler, and points out common
errors

Marty's version
original version, by Douglas Crockford of
Yahoo!

when your JS code doesn't work, paste it into
JSLint first to find many common problems

Debugging checklist

Are you sure the browser is even loading your JS file at all?
Put an alert at the top of it and make sure it appears.
When you change your code, do a full browser refresh (Shift-Ctrl-R)
Check bottom-right corner of Firefox for Firebug syntax
errors.
Paste your code into our JSLint tool to find problems.
Type some test code into Firebug's console or use a
breakpoint.

"My program does nothing"

Since Javascript has no compiler, many errors will cause your Javascript program to just "do
nothing." Some questions you should ask when this happens:

Is the browser even loading my script file?
If so, is it reaching the part of the file that I want it to reach?
If so, what is it doing once it gets there?

Is my JS file loading?

put an alert at the VERY TOP of your script:

if it shows up, good!
if it doesn't show up:

maybe your HTML file isn't linking to the script properly
double-check file names and directories

maybe your script has a syntax error

check bottom-right for Firebug error text
comment out the rest of your script and try it again
run your script through JSLint to find some syntax problems

Is it reaching the code I want it to run?

put an alert at the start of the appropriate function:

write a descriptive message, not just "hello" or "here"
if it shows up, good!
if it doesn't show up:

if it's an event handler, maybe you didn't attach it properly
maybe your script has a syntax error; run JSLint

Object 'foo' has no properties

these errors mean you are trying to utilize an undefined value:
Object foo has no properties

ReferenceError: foo is not defined

TypeError: foo.bar is not a function

possible causes:
you're trying to access a variable that is out of scope
you're trying access a DOM element with an invalid id
you've run off the bounds of an array
you've spelled the variable's name incorrectly

Common bug: bracket mismatches

function foo() {

 ... // missing closing curly brace!

function bar() {

 ...

}

JS doesn't always tell us when we have too many/few brackets
(it is legal in JavaScript to declare one function inside another)

symptom: script becomes (fully or partially) non-functional
detection: bracket matching in TextPad (highlight bracket, press Ctrl-M); using an Indenter
tool; JSLint

String type (7.2.7)

var s = "Connie Client";

var fName = s.substring(0, s.indexOf(" ")); // "Connie"
var len = s.length; // 13
var s2 = 'Melvin Merchant';

methods: charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf,
replace, split, substring, toLowerCase, toUpperCase

charAt returns a one-letter String (there is no char type)
length property (not a method as in Java)
Strings can be specified with "" or ''
concatenation with + :

1 + 1 is 2, but "1" + 1 is "11"

More about String

escape sequences behave as in Java: \' \" \& \n \t \\
converting between numbers and Strings:

var s1 = String(myNum);
var s2 = count + " bananas, ah ah ah!";
var n1 = parseInt("42 is the answer"); // 42
var n2 = parseFloat("booyah"); // NaN

accessing the letters of a String:

var firstLetter = s[0]; // doesn't work in IE
var lastLetter = s.charAt(s.length - 1);

for loop (same as Java) (7.2.8)

for (initialization; condition; update) {

 statements;
}

var sum = 0;

for (var i = 0; i < 100; i++) {
 sum = sum + i;

}

var s1 = "hello";

var s2 = "";

for (var i = 0; i < s.length; i++) {
 s2 += s1.charAt(i) + s1.charAt(i);

}
// s2 stores "hheelllloo"

Math object (7.2.9)

var rand1to10 = Math.floor(Math.random() * 10 + 1);
var three = Math.floor(Math.PI);

methods: abs, ceil, cos, floor, log, max, min, pow, random, round, sin,
sqrt, tan
properties: E, PI

Special values: null and undefined (7.2.10)

var ned = null;

var benson = 9;

// at this point in the code,
// ned is null
// benson's 9
// caroline is undefined

undefined : has not been declared, does not exist
null : exists, but was specifically assigned a null value
Why does JavaScript have both of these?

7.3: Program Logic

7.1: Key JavaScript Concepts
7.2: JavaScript Syntax
7.3: Program Logic

7.4: Advanced JavaScript Syntax

Logical operators (7.3.1, 7.3.4)

> < >= <= && || ! == != === !==

most logical operators automatically convert types:
5 < "7" is true
42 == 42.0 is true
"5.0" == 5 is true

=== and !== are strict equality tests; checks both type and value
"5.0" === 5 is false

if/else statement (same as Java) (7.3.2)

if (condition) {

 statements;

} else if (condition) {

 statements;
} else {

 statements;
}

identical structure to Java's if/else statement
JavaScript allows almost anything as a condition

Boolean type (7.3.3)

var iLike190M = true;

var ieIsGood = "IE6" > 0; // false
if ("web dev is great") { /* true */ }
if (0) { /* false */ }

any value can be used as a Boolean
"falsey" values: 0, 0.0, NaN, "", null, and
undefined

"truthy" values: anything else
converting a value into a Boolean explicitly:

var boolValue = Boolean(otherValue);

var boolValue = !!(otherValue);

while loops (same as Java) (7.3.5)

while (condition) {

 statements;
}

do {

 statements;

} while (condition);

break and continue keywords also behave as in Java

7.4: Advanced JavaScript Syntax

7.1: Key JavaScript Concepts
7.2: JavaScript Syntax
7.3: Program Logic
7.4: Advanced JavaScript Syntax

Scope, global and local variables (7.4.1)

// global code; like "main"
var count = 1;
f2();

f1();

function f1() {

 var x = 999;

 count = count * 10;
}

function f2() { count++; }

variable count above is global (can be seen by all functions)
variable x above is local (can be seen by only f1)
both f1 and f2 can use and modify count (what is its value?)

Function parameters/return (7.4.3)

function name(parameterName, ..., parameterName) {

 statements;

 return expression;
}

function quadratic(a, b, c) {

 return -b + Math.sqrt(b * b - 4 * a * c) / (2 * a);

}

parameter/return types are not written
var is not written on parameter declarations
functions with no return statement return undefined

any variables declared in the function are local (exist only in that function)

Calling functions (same as Java)

name(parameterValue, ..., parameterValue);

var root = quadratic(1, -3, 2);

if the wrong number of parameters are passed:
too many? extra ones are ignored
too few? remaining ones are given undefined value

Common bug: spelling error

function foo() {

 Bar(); // capitalized wrong

...
function bar() {

 ...
}

if you misspell an identifier, the value undefined is used
if you set undefined as an event handler, nothing happens (fails silently)
symptom: function doesn't get called, or a value is unexpectedly undefined
fix: JSLint warns you if you use an undeclared identifier

Arrays (7.4.2)

var name = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name[index] = value; // store element

var ducks = ["Huey", "Dewey", "Louie"];

var stooges = []; // stooges.length is 0
stooges[0] = "Larry"; // stooges.length is 1
stooges[1] = "Moe"; // stooges.length is 2
stooges[4] = "Curly"; // stooges.length is 5
stooges[4] = "Shemp"; // stooges.length is 5

two ways to initialize an array
length property (grows as needed when elements are added)

Array methods

var a = ["Stef", "Jason"]; // Stef, Jason
a.push("Brian"); // Stef, Jason, Brian
a.unshift("Kelly"); // Kelly, Stef, Jason, Brian
a.pop(); // Kelly, Stef, Jason
a.shift(); // Stef, Jason
a.sort(); // Jason, Stef

array serves as many data structures: list, queue, stack, ...
methods: concat, join, pop, push, reverse, shift, slice, sort, splice,
toString, unshift

push and pop add / remove from back
unshift and shift add / remove from front
shift and pop return the element that is removed

Splitting strings: split and join

var s = "the quick brown fox";

var a = s.split(" "); // ["the", "quick", "brown", "fox"]
a.reverse(); // ["fox", "brown", "quick", "the"]
s = a.join("!"); // "fox!brown!quick!the"

split breaks apart a string into an array using a delimiter
can also be used with regular expressions (seen later)

join merges an array into a single string, placing a delimiter between them

Popup boxes (7.4.4)

alert("message"); // message

confirm("message"); // returns true or false

prompt("message"); // returns user input string

Extra random JavaScript stuff

7.1: Key JavaScript Concepts
7.2: JavaScript Syntax
7.3: Program Logic
7.4: Advanced JavaScript Syntax
Extra random JavaScript stuff

JavaScript in HTML body (example)

<script type="text/javascript">

 JavaScript code

</script>

JS code can be embedded within your HTML page's head or body
runs as the page is loading
this is considered bad style and shouldn't be done in this course

mixes HTML content and JS scripts (bad)
can cause your page not to validate

The typeof function

typeof(value)

given these declarations:
function foo() { alert("Hello"); }

var a = ["Huey", "Dewey", "Louie"];

The following statements are true:
typeof(3.14) === "number"

typeof("hello") === "string"

typeof(true) === "boolean"

typeof(foo) === "function"

typeof(a) === "object"

typeof(null) === "object"
typeof(undefined) === "undefined"

The arguments array

function example() {

 for (var i = 0; i < arguments.length; i++) {
 alert(arguments[i]);
 }

}

example("how", "are", "you"); // alerts 3 times

every function contains an array named arguments representing the parameters passed
can loop over them, print/alert them, etc.
allows you to write functions that accept varying numbers of parameters

The "for each" loop

for (var name in arrayOrObject) {

 do something with arrayOrObject[name];
}

loops over every index of the array, or every property name of the object
using this is actually discouraged, for reasons we'll see later

Associative arrays / maps

var map = [];

map[42] = "the answer";

map[3.14] = "pi";

map["champ"] = "suns";

the indexes of a JS array need not be integers
this allows you to store mappings between an index of any type ("keys") and value
similar to Java's Map collection or PHP's associative arrays

Date object

var today = new Date(); // today
var midterm = new Date(2007, 4, 4); // May 4, 2007

methods
getDate, getDay, getMonth, getFullYear, getHours, getMinutes,
getSeconds, getMilliseconds, getTime, getTimezoneOffset,
parse, setDate, setMonth, setFullYear, setHours, setMinutes,
setSeconds, setMilliseconds, setTime, toString

quirks
getYear returns a 2-digit year; use getFullYear instead
getDay returns day of week from 0 (Sun) through 6 (Sat)
getDate returns day of month from 1 to (# of days in month)
Date stores month from 0-11 (not from 1-12)

Injecting Dynamic Text: document.write

document.write("message");

prints specified text into the HTML page
this is very bad style; this is how newbs program JavaScript:

putting JS code in the HTML file's body
having that code use document.write
(this is awful style and a poor substitute for server-side PHP programming)

The eval (evil?) function

eval("JavaScript code");

eval("var x = 7; x++; alert(x / 2);"); // alerts 4

eval treats a String as JavaScript code and runs
that code
this is occasionally useful, but usually a very bad
idea

strings from user input can cause arbitrary
code execution
leads to bugs and security problems; do not
use

