Web Programming Step by Step

Chapter 7
JavaScript for Interactive Web Pages

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

~ XHTML r
« 1.1 %u cssé

7.1: Key JavaScript Concepts

¢ 7.1: Key JavaScript Concepts
e 7.2: JavaScript Syntax

e 7.3: Program Logic

e 7.4: Advanced JavaScript Syntax

What is JavaScript? (7.1)

e a lightweight programming language (scripting)
e used to make web pages interactive
o insert dynamic text into HTML (ex: user name)
o react to events (ex: page load user click)
o get information about a user's computer (ex: browser type)
o perform calculations on uset's computer (ex: form validation)
e a web standard (but not supported identically by all browsers)
e NOT related to Java other than by name and some syntactic similarities

JavaScript vs. Java

e interpreted, not compiled
e more relaxed syntax and rules
o fewer and "looser" data types (

o variables don't need to be declared s
. . ——
o errors often silent (few exceptions) JaV 3
e key construct is the function rather than the class +

o (more procedural less object-oriented) JavaScript
e contained within a web page and integrates with its HTML/CSS content

JavaScript vs. PHP

e similarities:
o both are interpreted, not compiled
o both are relaxed about syntax, rules, and types
o both are case-sensitive JS <3
o both have built-in regular expressions (powerful text
processing)
e differences:
o JSis less procedural (verb (noun)), more object-oriented (noun.verb ())
o]S focuses on user interfaces and interacting with a document; PHP is geared toward
HTML output and file/form processing
© JS code runs on the client's browser; PHP code runs on the web server

Client-side scripting (7.1.1)

Web Browser Web Server

@ GET PHP Script

hello.php <?php
include(’header.p
if (isset($_GET[’

page = $_GET['p
} else {

http://example.com/hello.php

Hello world!

JavaScript Script
window.onloa Execute
$(’start’) @ script
@ $C’end’) .ol
var bounds
for (var i
boundary

<!DOCTYPE html PU
<html xmIns="http
<head>

Execute script @ <tj tle>Hello

HTML Output

User’s Computer Server Computer

e client-side script: code runs in browser after page is sent back from server
o often this code manipulates the page or responds to user actions

Why use client-side programming?

PHP already allows us to create dynamic web pages. Why also use a client-side language like
JavaScript?

e PHP benefits:
o security: has access to server's private data; client can't see source code
o compatibility: avoids browser compatibility issues
o power: fewer restrictions (can write to files, open connections to other servers,
connect to databases, ...)
e JavaScript benefits:
o usability: can modify a page without having to post back to the server (faster Ul)
o efficiency: can make small, quick changes to page without waiting for server
o event-driven: can respond to user actions like clicks and key presses

Event-driven programming

An "event"
occurs

@ User interacts with page /— EVENT!
=

Click me! [!
@ A piece of JS code
@ The page's runs in response
appearance is function myEvent() {
updated/modified e

in some way as a result L

e most languages' programs start with a main method and run sequentially
e JavaScript programs wait for user actions called events and respond to them
e event-driven programming: writing programs driven by user events

Buttons: <button>

the most common clickable Ul control (inline)

<button>Click me!</button> HTML
_Clickme! | output

e button's text appears inside tag; can also contain images

e To make a responsive button or other Ul control:
1. choose the control (e.g. button) and event (e.g. mouse click) of interest
2. write a JavaScript function to run when the event occurs
3. attach the function to the event on the control

Linking to a JavaScript file: script

<script src="filename" type="text/javascript"></script> HTML

<script src="example.js" type="text/javascript"></script> HTML

e script tag should be placed in HTML page's head
e script code is stored in a separate . J s file

® JS code can be placed directly in the HTML file's body or head (like CSS)
o but this is bad style (should separate content, presentation, and behavior)

A JavaScript statement: alert

alert ("message") ;

JS
alert ("IE6 detected. Suck-mode enabled."); JS
Alert x|

& IE6 detected. Suck-mode enabled.
oK |
output
e a |S command that pops up a dialog box with a message
JavaScript functions
function name () {
statement ;
statement ;
statement ;
} JS
function myFunction () {
alert ("Hello!"™);
alert ("How are you?");
} JS|

e the above could be the contents of example. js linked to our HTML page
e statements placed into functions can be evaluated in response to user events

Event handlers

<element attributes onclick="function();">... HTML

<button onclick="myFunction();">Click me!</button> HTML

Click me! | output

e JavaScript functions can be set as event handlers
o when you interact with the element, the function will execute
e onclickisjust one of many event HTML attributes we'll use

Document Object Model (DOM) (7.1.4)

a set of JavaScript objects that represent each element on the page

e most JS code manipulates elements on an HTML
page

e we can examine the state of the elements, e.g.
whether a box is checked

e we can change state, e.g. putting text into a div / \

e we can change styles, e.g. make a paragraph red

html

head body
title hl div

Accessing elements: getElementById

var hame = document.getElementById ("id") ; JS

<button onclick="myFunction2();">Click me!</button> _
replace me n

v

function myFunction2 () {

var span = document.getElementById("output");
span.innerHTML = "Hello, how are you?";

GMmdthmme outvut

e document.getElementById returns DOM object for an element with a given id
e can change the text inside most elements by setting innerHTML property

7.2: JavaScript Syntax

e 7.1: Key JavaScript Concepts

e 7.2: JavaScript Syntax

e 7.3: Program Logic

e 7.4: Advanced JavaScript Syntax

Variables and types (7.2.1, 7.2.3)

var

name = expression;

var
var
var

clientName = "Connie Client";
age = 32;
weight = 127.4;

e variables are declared with the var keyword (case sensitive)
e types are not specified, but JS does have types ("loosely typed")

o Number, Boolean, String,Array,Object, Function, Null,
Undefined

o can find out a variable's type by calling t ypeof

Number type (7.2.2)

var
var
var

enrollment = 9
medianGrade =
credits = 5 +

e
n

integers and real numbers are the same type (no int vs. double)
same operators: + — * / & ++ —= = 4= -= *= /= %=
similar precedence to Java

many operators auto-convert types: "2" * 31is 6

Comments (same as Java) (7.2.4)

// single-line comment

/* multi-line comment */

e identical to Java's comment syntax
e recall: 4 comment syntaxes
o HTML.: <!-- comment -->
o CSS/JS/PHP: /* comment */
o Java/]JS/PHP: // comment
o PHP: # comment

DOM object properties (7.2.5)

<div id="main" class="foo bar">

<p>Hello, very happy to see you!</p>

</div>

HTML

var div = document.getElementById("main") ;
var image = document.getElementById("icon");

e
n

tagName: element's HTML tag, capitalized; div.tagNameis "DIV"
className: CSS classes of element; div.classNameis "foo bar"
innerHTML: HTML content inside element; div.innerHTMLis "\n
<p>Hello, very happy to

src: URL target of an image; image.srcis "images/borat.jpg"

DOM properties for other elements

<input id="studentid" type="text" size="7" maxlength="7" />
<input id="freshman" type="checkbox" checked="checked" /> Freshman? HTML

var sid = document.getElementById("studentid");
var frosh = document.getElementById ("freshman") ;

| ¥ Freshman? output

e value: the text in an input control
o sid.value couldbe "1234567"

e checked, disabled, readOnly: whether a control is selected/disabled/etc.
o frosh.checkedis true

s
n

Debugging common errors (7.2.6)

e JavaScript's syntax is looser than Java's, but its errors are meaner
© most errors produce no visible output or error message!
® some common error symptoms:
o “My program does nothing.” (most errors produce no output)
o “It just prints undefined.” (many typos lead to undefined variables)
o “I get an error that says, £oo has no properties.”

Debugging JS code in Firebug

e Firebug JS debugger can set breakpoints, step
through code, examine values (Script tab)

e interaction pane for typing in arbitrary JS
expressions (Console tab; Watch tab within Script
tab)

£) ASCIImation - Mozilla Firefox

file Edit View History Bookmarks Tools Hel

/N
Play Controls:

Start/Stop

ﬁ‘: Inspect Clear Profle | asdi_scriptjs~ | st
Console HTML 55 | Script | DOM Het

43 doEnabling (true) ;
44| 3y

// Called when the Star
function startStop{) {

T ST SN o S

© a8 playing = !playin
4c if (playing) {
5 start (};
// Shows the next frame
4 |
| Done

JSLint

e JSLint: an analyzer that checks your JS code,
much like a compiler, and points out common
errors

o Marty's version
o original version, by Douglas Crockford of
Yahoo!

e when your |S code doesn't work, paste it into

JSLint first to find many common problems

) ISLint, The JavaScript Verifier - Mozilla Firefox

History Bookmarks Tools Help

-| JSLint

The JavaScript Verifier (Read the documentation)

‘/* -
CSE 190 M, Spring 2008

Lecture Slides Javascript functions

Author: Marty Stepp

=/

slidesWindowLoad, false); =l

Error:
Problem at line 7 character 10: Unexpected characters in '$".

function $(id) { =l
@se

o]
N

Debugging checklist

e Are you sure the browser is even loading your JS file at all?
Putan alert at the top of it and make sure it appears.

e When you change your code, do a full browser refresh (Shift-Ctrl-R)

e Check bottom-right corner of Firefox for Firebug syntax
errors.

e Paste your code into our JSLint tool to find problems.

e Type some test code into Firebug's console or use a
breakpoint.

"My program does nothing"

Since Javascript has no compiler, many errors will cause your Javascript program to just "do
nothing." Some questions you should ask when this happens:

e Is the browser even loading my script file?
e If so, is it reaching the part of the file that I want it to reach?
e If so, what is it doing once it gets there?

Is my JS file loading?

e putan alert at the VERY TOP of your script:
x

y, My script loaded.

Ok

e if it shows up, good!
e if it doesn't show up:
o maybe your HTML file isn't linking to the script propetly
m double-check file names and directories
o maybe your script has a syntax error

m check bottom-right for Firebug error text =

€ 30 Errors | Adblock

m comment out the rest of your script and try it again
m run your script through JSLint to find some syntax problems

Is it reaching the code | want it to run?

e putan alert at the start of the appropriate function:
x

1 rectClick was called on [object HTMLDivElement]

o write a descriptive message, not just "hello" or "here"
e if it shows up, good!
e if it doesn't show up:

o if it's an event handler, maybe you didn't attach it propetly

© maybe your script has a syntax error; run JSLint

Object 'foo' has no properties

e these errors mean you are trying to utilize an undefined value:
o Object foo has no properties
o ReferenceError: foo is not defined
o TypeError: foo.bar is not a function
e possible causes:
o you're trying to access a vatiable that is out of scope
o you're trying access a DOM element with an invalid 1d
o you've run off the bounds of an array
o you've spelled the variable's name incorrectly

Common bug: bracket mismatches

function foo () {
// missing closing curly brace!

function bar () {

}

»“
W

e JS doesn't always tell us when we have too many/few brackets

o (it is legal in JavaScript to declare one function inside another)

e symptom: script becomes (fully or partially) non-functional

e detection: bracket matching in TextPad (highlight bracket, press Ctrl-M); using an Indenter

tool; JSLint

String type (7.2.7)

var s = "Connie Client";

var fName = s.substring (0, s.indexOf (" ")); // "Connie"

var len = s.length; // 13

var s2 = 'Melvin Merchant'; JS

e methods: charAt, charCodeAt, fromCharCode, indexOf, lastIndexOf,
replace,split, substring, toLowerCase, toUpperCase
o charAt returns a one-letter String (there is no char type)
e length property (not a method as in Java)
e Strings can be specified with "" or '’

® concatenation with + :
ol+1lis2,but"1" +1is"™11"

More about String

e cscape sequences behave asin Java: \' \" \& \n \t \\
e converting between numbers and Strings:

var sl = String(myNum) ;

var s2 = count + " bananas, ah ah ah!";

var nl = parselInt("42 is the answer"); // 42

var n2 = parseFloat ("booyah"); // NaN JS

e accessing the letters of a String:

var firstletter = s[0]; // doesn't work in IE
var lastLetter = s.charAt(s.length - 1); JS

for loop (same as Java) (7.2.8)

for (initialization; condition; update) {
statements;
}

JS

var sum = 0;
for (var i = 0; i < 100; i++) {
sum = sum + 1;

}

var sl = "hello";

var s2 = "";

for (var i = 0; i < s.length; i++) {
s2 += sl.charAt (i) + sl.charAt(i):;

}
// s2 stores "hheelllloo"

Math object (7.2.9)

var randltolO = Math.floor (Math.random() * 10 + 1);
var three = Math.floor (Math.PI);

e methods: abs, ceil, cos, floor, log, max, min, pow, random, round, sin,

sgrt, tan
e properties: E, PT

s

Special values: null and undefined (7.2.10)

var ned = null;
var benson = 9;

// at this point in the code,
// ned is null

// benson's 9

// caroline is undefined

e undefined: has not been declared, does not exist
e null : exists, but was specifically assigned a null value
e Why does JavaScript have both of these?

7.3: Program Logic

e 7.1: Key JavaScript Concepts

e 7.2: JavaScript Syntax

e 7.3: Program Logic

e 7.4: Advanced JavaScript Syntax

Logical operators (7.3.1, 7.3.4)

e > < >= <K= && || ! == = === ==
e most logical operators automatically convert types:
o5 < "7"istrue

042 == 42.01istrue
o"5.0" == 5istrue

e === and ! == are strict equality tests; checks both type and value
o"5.0" === 5isfalse

if/else statement (same as Java) (7.3.2)

if (condition) {
Sstatements;

} else if (condition) {
statements;

} else {
statements;

e identical structure to Java's 1f/else statement
e JavaScript allows almost anything as a condition

Boolean type (7.3.3)

var 1Likel90M = true;

var ieIsGood = "IE6" > 0; // false
if ("web dev is great") { /* true */ }
if (0) { /* false */ }

e any value can be used as a Boolean

o "falsey" values: 0, 0.0, NaN, "", null, and
undefined

o "truthy" values: anything else

e converting a value into a Boolean explicitly:
o var boolValue = Boolean (otherValue) ;
o var boolValue = !! (otherValue) ;

while loops (same as Java) (7.3.5)

while (condition) {
statements;
}

do {
statements;
} while (condition) ;

e break and continue keywords also behave as in Java

C

\4
7))

¢,
(f)

7.4: Advanced JavaScript Syntax

e 7.1: Key JavaScript Concepts

e 7.2: JavaScript Syntax

e /.3: Program Logic

e 7.4: Advanced JavaScript Syntax

Scope, global and local variables (7.4.1)

// global code; like "main"
var count = 1;

£20);

£10) 7

function f£1 () {
var x = 999;
count = count * 10;

}
function f£f2 () { count++; }

e variable count above is global (can be seen by all functions)
e variable x above is local (can be seen by only £1)
e both £1 and £2 can use and modify count (what is its value?)

Function parameters/return (7.4.3)

function name (parameterName, ..., parameterName) {
statements;
return expression;

}

(\{
(f)

function quadratic(a, b, c) {
return -b + Math.sqgrt(b * b - 4 * a * ¢c) / (2 * a);

}

JS

® parameter/return types ate not written
o var is zot written on parameter declarations
o functions with no return statement return undefined
e any variables declared in the function are local (exist only in that function)

Calling functions (same as Java)

name (parameterValue, ..., parameterValue) ;

H
N

\var root = quadratic(l, -3, 2);

e if the wrong number of parameters are passed:
© too many? extra ones are ignored
o too few? remaining ones are given undefined value

Common bug: spelling error

function foo () {
Bar () ; // capitalized wrong

function bar () {

} . o

if you misspell an identifier, the value undefined is used

if you set unde fined as an event handler, nothing happens (fails silently)
symptom: function doesn't get called, or a value is unexpectedly undefined
fix: JSLint warns you if you use an undeclared identifier

Arrays (7.4.2)

var hame = []; // empty array

var name = [value, value, ..., value]; // pre-filled

name [index] = value; // store element JS
var ducks = ["Huey", "Dewey", "Louie"];

var stooges = []; // stooges.length is 0

stooges[0] = "Larry"; // stooges.length is 1

stooges[1l] = "Moe"; // stooges.length is 2

stooges[4] = "Curly"; // stooges.length is 5

stooges[4] = "Shemp"; // stooges.length is 5 JS|

e two ways to initialize an array
e length property (grows as needed when elements are added)

Array methods

var a = ["Stef", "Jason"]; // Stef, Jason

a.push ("Brian") ; // Stef, Jason, Brian

a.unshift ("Kelly"); // Kelly, Stef, Jason, Brian

a.pop () ; // Kelly, Stef, Jason

a.shift(); // Stef, Jason

a.sort(); // Jason, Stef JS

e array serves as many data structures: list, queue, stack, ...
e methods: concat, join, pop, push, reverse, shift,slice, sort,splice,
toString,unshift
o push and pop add / remove from back
o unshift and shift add / remove from front
o shift and pop return the element that is removed

Splitting strings: split and join

var s = "the quick brown fox";

var a = s.split(" "); // ["the", "quick", "brown", "fox"]
a.reverse () ; // ["fox", "brown", "quick", "the"]

s = a.join("!"); // "fox'brown'!quick!the" JS

e split breaks apart a string into an array using a delimiter
o can also be used with regular expressions (seen later)
e join merges an array into a single string, placing a delimiter between them

Popup boxes (7.4.4)

alert ("message") ; // message
confirm("message") ; // returns true or false
prompt ("message") ; // returns user input string JS
/N 1E6 detected. Suck-mode enabled. L.’J Depositing $100.00. Are you sure? Lr’/ UL (0 i
|

Extra random JavaScript stuff

e 7.1: Key JavaScript Concepts

e /.2: JavaScript Syntax

e 7.3: Program Logic

e 7.4: Advanced JavaScript Syntax
e Extra random JavaScript stuff

JavaScript in HTML body (example)

<script type="text/javascript">
JavaScript code
</script>

HTML

®]S code can be embedded within your HTML page's head or body

e runs as the page is loading

e this is considered bad style and shouldn't be done in this course

o mixes HTML content and JS scripts (bad)

O can cause your page not to validate

The typeof function

‘typeof (value)

e oiven these declarations:

o function foo () { alert ("Hello");

ovar a = ["Huey", "Dewey",

e The following statements are t rue:

o typeof (3.14) === "number"

o typeof ("hello") === "string"
o typeof (true) === "boolean"

o typeof (foo) === "function"

o typeof (a) === "object"

o typeof (null) === "object"

° (

typeof (undefined) === "undefined"

}

"Louie"];

The arguments array

function example () {
for

(var i = 0; i < arguments.length; i++) {
alert (arguments[i]) ;

}
}

example ("how", "are", "you");

// alerts 3 times JS

e cvery function contains an array named arguments representing the parameters passed
e can loop over them, print/alert them, etc.

e allows you to write functions that accept varying numbers of parameters

The "for each” loop

for (var name in arrayOrObject) {

do something with arrayOrObject [name] ;
}

e loops over every index of the array, or every property name of the object
e using this is actually discouraged, for reasons we'll see later

Associative arrays / maps

var map = [];

map[42] = "the answer";

map([3.14] = "pi";

map ["champ"] = "suns"; JS

e the indexes of a JS array need not be integers
e this allows you to store zappings between an index of any type ("keys") and value
e similar to Java's Map collection or PHP's associative arrays

Date object

var today = new Date(); // today
var midterm = new Date (2007, 4, 4); // May 4, 2007 JS
e methods

o getDate, getDay,getMonth,getFullYear,getHours, getMinutes,
getSeconds,getMilliseconds,getTime, getTimezoneOffset,
parse, setDate, setMonth, setFullYear, setHours, setMinutes,
setSeconds, setMilliseconds, setTime, toString

e quirks

o getYear returns a 2-digit year; use getFullYear instead

o getDay returns day of week from O (Sun) through 6 (Sat)

o getDate returns day of month from 1 to (# of days in month)

o Date stores month from 0-11 (not from 1-12)

Injecting Dynamic Text: document.write

document .write ("message") ; JS

e prints specified text into the HTML page
e this is very bad style; this is how newbs program JavaScript:
o putting JS code in the HTML file's body
o having that code use document.write
o (this is awful style and a poor substitute for server-side PHP programming)

The eval (evil?) function

eval ("JavaScript code") ; JS

]eval("var x = 7; x++; alert(x / 2);™); /J/ alerts 4 H

e eval treats a String as JavaScript code and runs
that code
e this is occasionally useful, but usually a very bad
idea
o strings from user input can cause arbitrary
code execution
o leads to bugs and security problems; do not
use

