
Web Programming Step by Step
Lecture 20

XML
Reading: 10.3 - 10.4

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

What is XML?

XML: a "skeleton" for creating markup languages
you already know it!

syntax is identical to XHTML's:

<element attribute="value">content</element>

languages written in XML specify:
names of tags in XHTML: h1, div, img, etc.
names of attributes in XHTML: id/class, src, href, etc.
rules about how they go together in XHTML: inline vs. block-level elements

used to present complex data in human-readable form
"self-describing data"

Anatomy of an XML file

<?xml version="1.0" encoding="UTF-8"?> <!-- XML prolog -->
<note> <!-- root element -->
 <to>Tove</to>
 <from>Jani</from> <!-- element ("tag") -->
 <subject>Reminder</subject> <!-- content of element -->
 <message language="english"> <!-- attribute and its value -->
 Don't forget me this weekend!
 </message>
</note>

begins with an <?xml ... ?> header tag ("prolog")
has a single root element (in this case, note)
tag, attribute, and comment syntax is just like XHTML

Uses of XML

XML data comes from many sources on the web:
web servers store data as XML files
databases sometimes return query results as XML
web services use XML to communicate

XML is the de facto universal format for exchange of data
XML languages are used for music, math, vector graphics
popular use: RSS for news feeds & podcasts

Pros and cons of XML

pro:

easy to read (for humans and computers)
standard format makes automation easy
don't have to "reinvent the wheel" for storing new types of data
international, platform-independent, open/free standard
can represent almost any general kind of data (record, list, tree)

con:

bulky syntax/structure makes files large; can decrease performance
example: quadratic formula in MathML

can be hard to "shoehorn" data into a good XML format

What tags are legal in XML?

any tags you want!
examples:

an email message might use tags called to, from, subject
a library might use tags called book, title, author

when designing an XML file, you choose the tags and attributes that best represent the data
rule of thumb: data = tag, metadata = attribute

Doctypes and Schemas

"rule books" for individual flavors of XML
list which tags and attributes are valid in that language, and how they can be used
together

used to validate XML files to make sure they follow the rules of that "flavor"
the W3C HTML validator uses the XHTML doctype to validate your HTML

for more info:
Document Type Definition (DTD) ("doctype")
W3C XML Schema

optional — if you don't have one, there are no rules beyond having well-formed XML
syntax
(we won't cover these any further here)

XML and Ajax

web browsers can display XML files, but often you instead want to
fetch one and analyze its data
the XML data is fetched, processed, and displayed using Ajax

(XML is the "X" in "Ajax")

It would be very clunky to examine a complex XML structure as just
a giant string!
luckily, the browser can break apart (parse) XML data into a set of
objects

there is an XML DOM, very similar to the (X)HTML DOM

XML DOM tree structure

<?xml version="1.0" encoding="UTF-8"?>
<categories>
 <category>children</category>
 <category>computers</category>
 ...
</categories>

the XML tags have a tree structure
DOM nodes have parents, children, and siblings

Recall: Javascript XML (XHTML) DOM

The DOM properties and methods* we already know can be used on XML nodes:

properties:
firstChild, lastChild, childNodes, nextSibling,
previousSibling, parentNode
nodeName, nodeType, nodeValue, attributes

methods:
appendChild, insertBefore, removeChild, replaceChild
getElementsByTagName, getAttribute, hasAttributes,
hasChildNodes

caution: cannot use HTML-specific properties like innerHTML in the XML DOM!

* (though not Prototype's, such as up, down, ancestors, childElements,
descendants, or siblings)

Navigating the node tree

caution: can only use standard DOM methods and properties in XML DOM
HTML DOM has Prototype methods, but XML DOM does not! (o noes!)

caution: can't use ids or classes to use to get specific nodes
id and class are not necessarily defined as attributes in the flavor of XML being
read

caution: firstChild/nextSibling properties are unreliable
annoying whitespace text nodes!

the best way to walk the XML tree:

var elms = node.getElementsByTagName("tagName")

returns an array of all node's children of the given tag name

node.getAttribute("attributeName")

gets an attribute of an element

Using XML data in a web page

Procedure:

use Ajax to fetch data1.
use DOM methods to examine XML:

XMLnode.getElementsByTagName()

2.

extract the data we need from the XML:
XMLelement.getAttribute(), XMLelement.firstChild.nodeValue, etc.

3.

create new HTML nodes and populate with extracted data:
document.createElement(), HTMLelement.innerHTML

4.

inject newly-created HTML nodes into page
HTMLelement.appendChild()

5.

Fetching XML using AJAX (template)

 new Ajax.Request(

 "url",
 {
 method: "get",

 onSuccess: functionName
 }
);
 ...

function functionName(ajax) {

 do something with ajax.responseXML;
}

ajax.responseText contains the XML data in plain text
ajax.responseXML is a pre-parsed XML DOM object

Analyzing a fetched XML file using DOM

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We can use DOM properties and methods on ajax.responseXML:

// zeroth element of array of length 1
var foo = ajax.responseXML.getElementsByTagName("foo")[0];

// ditto
var bar = foo.getElementsByTagName("bar")[0];

// array of length 2
var all_bazzes = foo.getElementsByTagName("baz");

// string "bleep"
var bloop = foo.getAttribute("bloop");

Exercise: Late day distribution

Write a program that shows how many students turn homework in late for each assignment.
Data service here: http://webster.cs.washington.edu/hw/

parameter: assignment=hwn

Recall: Pitfalls of the DOM

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We are reminded of some pitfalls of the DOM:

// works - XML prolog is removed from document tree
var foo = ajax.responseXML.firstChild;

// WRONG - just a text node with whitespace!
var bar = foo.firstChild;

// works
var first_baz = foo.getElementsByTagName("baz")[0];

// WRONG - just a text node with whitespace!
var second_baz = first_baz.nextSibling;

// works - why?
var xyzzy = second_baz.firstChild;

Larger XML file example

<?xml version="1.0" encoding="UTF-8"?>
<bookstore>
 <book category="cooking">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year><price>30.00</price>
 </book>
 <book category="computers">
 <title lang="en">XQuery Kick Start</title>
 <author>James McGovern</author>
 <year>2003</year><price>49.99</price>
 </book>
 <book category="children">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year><price>29.99</price>
 </book>
 <book category="computers">
 <title lang="en">Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year><price>39.95</price>
 </book>
</bookstore>

Navigating node tree example

// make a paragraph for each book about computers
var books = ajax.responseXML.getElementsByTagName("book");
for (var i = 0; i < books.length; i++) {
 var category = books[i].getAttribute("category");
 if (category == "computers") {
 // extract data from XML
 var title = books[i].getElementsByTagName("title")[0].firstChild.nodeValue;
 var author = books[i].getElementsByTagName("author")[0].firstChild.nodeValue;

 // make an XHTML <p> tag containing data from XML
 var p = document.createElement("p");
 p.innerHTML = title + ", by " + author;
 document.body.appendChild(p);
 }
}

A historical interlude: why XHTML?

in XML, different "flavors" can be combined in single document
theoretical benefit of including other XML data in XHTML

nobody does this
most embedded data are in non-XML formats (e.g., Flash)

non-XML data must be embedded another way (we'll talk about this later on)
requires browser/plugin support for other "flavor" of XML

development slow to nonexistent
most XML flavors are specialized uses

Exercise: Animal game

Write a program that guesses which animal the user is thinking of. The program will arrive at
a guess based on the user's responses to yes or no questions. The questions come from a
web app named animalgame.php.

Practice problem: Animal game (cont'd)

The data comes in the following format:

<node nodeid="id">

 <question>question</question>

 <yes nodeid="id" />

 <no nodeid="id" />
</node>

<node nodeid="id">

 <answer>answer</answer>

</node>

to get a node with a given id: animalgame.php?nodeid=id
start by requesting the node with nodeid of 1 to get the first question

Attacking the problem

Questions we should ask ourselves:

How do I retrieve data from the web app? (what URL, etc.)
Once I retrieve a piece of data, what should I do with it?
When the user clicks "Yes", what should I do?
When the user clicks "No", what should I do?
How do I know when the game is over? What should I do in this case?

Debugging responseXML in Firebug

can examine the entire XML document, its node/tree structure

