Web Programming Step by Step

Lecture 15

Unobtrusive JavaScript
Reading: 8.1 - 8.3

Except where otherwise noted, the contents of this presentation are Copyright 2009 Marty Stepp
and Jessica Miller.

C 3™ WiC essp

8.1: Global DOM Objects

¢ 8.1: Global DOM Objects
e 8.2: DOM Element Objects
e 8.3: The DOM Tree

The six global DOM objects

Every Javascript program can refer to the following global objects:

name description

document | current HTML page and its content

history list of pages the user has visited
location | URL of the current HTML page

navigator | info about the web browser you are using

screen info about the screen area occupied by the browser

window the browser window

The window object

the entire browser window; the top-level object in DOM hierarchy

e technically, all global code and variables become part of the window object
® properties:
o document, history, location, name
e methods:
o alert,confirm,prompt (popup boxes)
o setInterval, setTimeout clearInterval, clearTimeout (timers)
o open, close (popping up new browser windows)
o blur, focus,moveBy, moveTo,print, resizeBy, resizeTo,
scrollBy,scrollTo

The document object

the current web page and the elements inside it

e properties:
o anchors,body, cookie, domain, forms, images, links, referrer,
title, URL
e methods:
o getElementById
o getElementsByName
o getElementsByTagName
o close,open,write,writeln
e complete list

The location object

the URL of the current web page

® properties:

0 host,hostname, href, pathname, port, protocol, search
e methods:

0 assign, reload, replace
e complete list

The navigator object

information about the web browser application

e properties:
o appName, appVersion, browserLanguage, cookieEnabled,
platform,userAgent
o complete list
e Some web programmers examine the navigator object to see what browser is being
used, and write browser-specific scripts and hacks:

\if (navigator.appName === "Microsoft Internet Explorer") { ... :Tﬂ

o (this is poor style; you should not need to do this)

The screen object

information about the client's display screen

® properties:
o availHeight,availWidth, colorDepth, height, pixelDepth,
width
o complete list

The history object

the list of sites the browser has visited in this window

® properties:
o length
methods:
o back, forward, go
complete list
sometimes the browser won't let scripts view history properties, for security

Unobtrusive JavaScript (8.1.1)

e JavaScript event code seen previously was obfrusive, in the HTML,; this is bad style
e now we'll see how to write u#nobtrusive JavaSctipt code

o HTML with minimal JavaScript inside

o uses the DOM to attach and execute all JavaScript functions
e allows separation of web site into 3 major categories:

o content (HTML) - what is it?

o presentation (CSS) - how does it look?

o behavior (JavaScript) - how does it respond to user interaction?

Obtrusive event handlers (bad)

<button id="ok" onclick="okayClick () ;">0OK</button> HTML

// called when OK button is clicked
function okayClick() {
alert ("booyah") ;
} JS

OK | output

e this is bad style (HTML is cluttered with]S code)
e goal: remove all JavaScript code from the HTML body

Attaching an event handler in JavaScript code

// where element is a DOM element object
element.event = function; JS

$("ok") .onclick = okayClick; JS
OK| output

e it is legal to attach event handlers to elements' DOM objects in your JavaScript code
o notice that you do not put parentheses after the function's name

e this is better style than attaching them in the HTML

e Where should we put the above code?

When does my code run?

<head>
<script src="myfile.js" type="text/javascript"></script>
</head>

<body> ... </body> HTML

// global code

var x = 3;

function f(n) { return n + 1; }

function g(n) { return n - 1; }

x = f(x); JS

e your file's JS code runs the moment the browser loads the script tag

o any variables are declared immediately

o any functions are declared but not called, unless your global code explicitly calls them
e at this point in time, the browser has not yet read your page's body

o none of the DOM objects for tags on the page have been created yet

A failed attempt at being unobtrusive

<head>
<script src="myfile.js" type="text/javascript'"></script>
</head>
<body>
<div><button id="ok">OK</button></div> HTML

// global code
$("ok") .onclick = okayClick; // error: $("ok") is null JS

e problem: global |S code runs the moment the script is loaded
e script in head is processed before page's body has loaded

o no elements are available yet or can be accessed yet via the DOM
e we need a way to attach the handler after the page has loaded...

The window.onload event (8.1.1)

// this will run once the page has finished loading

function functionName () {
element.event = functionName;
element . event functionName;

}

window.onload = functionName; // global code

e we want to attach our event handlers right after the page is done loading

JS

o there is a global event called window.onload event that occurs at that moment
e in window.onload handler we attach all the other handlers to run when events occur

An unobtrusive event handler

<!-- look Ma, no JavaScript! -->
<button id="ok">OK</button> HTML
// called when page loads; sets up event handlers
function pageLoad() {
S("ok").onclick = okayClick;
}
function okayClick() {
alert ("booyah") ;
}
window.onload = pageload; // global code JS
OK | output

Common unobtrusive JS errors

e many students mistakenly write () when attaching the handler

windew-ontoad——pagehoadi—+

window.onload = pageload;

okButton—eonelick —=—okayCltickH~+

okButton.onclick = okayClick; JS

o our JSLint checker will catch this mistake

e cvent names are all lowercase, not capitalized like most variables
Ty T »

window.onload = pageload; JS

Anonymous functions (8.1.2)

function (parameters) {
statements;

7S

}

e JavaScript allows you to declare anonymous functions
e quickly creates a function without giving it a name
e can be stored as a variable, attached as an event handler, etc.

Anonymous function example

window.onload = function() {
var okButton = document.getElementById("ok");
okButton.onclick = okayClick;

};

function okayClick() {

alert ("booyah") ;
} J,

OK| output

e or the following is also legal (though harder to read and bad style):

)

window.onload = function() {
var okButton = document.getElementById("ok");
okButton.onclick = function() {
alert ("booyah") ;
};
}; J

)

The keyword this (8.1.3)

this.fieldName // access field
this.fieldName = value; // modify field
this.methodName (parameters); // call method JS

e all JavaScript code actually runs inside of an object
e by default, code runs inside the global window object

o all global variables and functions you declare become part of window
e the this keyword refers to the current object

The keyword this (8.1.3)

function pageLoad() {
$("ok") .onclick = okayClick; // bound to okButton here

}

function okayClick() { // okayClick knows what DOM object
this.innerHTML = "booyah"; // it was called on
}

window.onload = pageload; JS

OK| output

e cvent handlers attached unobtrusively are bound to the element
e inside the handler, that element becomes this (rather than the window)

Fixing redundant code with this

<fieldset>

<label><input type="radio" name="ducks" value="Huey" /> Huey</label>
<label><input type="radio" name="ducks" value="Dewey" /> Dewey</label>
<label><input type="radio" name="ducks" wvalue="Louie" /> Louie</label>

</fieldset> HTML

function processDucks () {
1 F (S UM~ Y A a) [
i {(S{"huey"y-—checked)—{
Al er+ ("Tiiaxz 2o ~hoacoladl M) .
alert ("Huev is ecaecked)
1 1 £ (S (" xz 1) ~h lead) [
J - Ty U OCwey 7 =T T
1 5
+

alert (this.value + " is checked!");

e if the same function is assigned to multiple elements, each gets its own bound copy

