
Object-Oriented JavaScript
CSE 190 M (Web Programming) Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp, Jessica
Miller, and Jim George, and are licensed under the Creative Commons Attribution 2.5 License.

Lecture outline
background / motivation
object-oriented JavaScript
creating classes

Why use classes and objects?
JavaScript treats functions asfirst-class citizens
small programs are easily written without adding any classes or objects
larger programs become cluttered with disorganized functions
groupingrelated data and behavior into objects helps manage size and complexity, promotes code reuse

Interacting with objects
You have alreadyused many types of JavaScript objects:

Strings
arrays
HTML / XML DOM objects
Prototype:Ajax.Request
Scriptaculous:Effect, Sortable, Draggable

Creating a new anonymous object
var name = {
 fieldName: value,
 ...
 fieldName: value
};

var pt = {
 x: 4,
 y: 3
} ;
alert(pt.x + ", " + pt.y);

in JavaScript, you can create a new object without creating aclass
the above is like aPoint object; it has fields namedx andy
the object does not belong to any class; it is the only one of its kind

You've already done this...
new Ajax.Request(
 "http://example.com/app.php",
 {
 method: "get",
 onSuccess: ajaxSuccess
 }
);

new Effect.Opacity("my_element",
 {
 duration: 2.0,
 from: 1.0,
 to: 0.5
 }
);

the sets of parameters between{} that you passed to Prototype and Scriptaculous were actually
anonymous objects

Objects with behavior
var name = {
 ...
 methodName: function(parameters) {
 statements;
 },
 ...
};

var pt = {
 x: 4,
 y: 3,
 distanceFromOrigin: function() {
 return this.x * this.x + this.y * this.y;
 }
};
alert(pt.distanceFromOrigin()); // 5

like in Java, objects' methods run "inside" that object
inside an object's method, the object can refer to itself asthis
unlike in Java, thethis keyword is mandatory in JS

A paradigm shift: prototypes
What if we want to create an entire new class, not just one new object?

(so that we could say new Point())

JavaScript supports objects and is considered an object-oriented language
but, unlike Java,JavaScript does NOT have classes
JS instead supports a concept calledprototypes
(not to be confused with the Prototype library)

prototype: a "super-object," an ancestor of a JavaScript object
like a superclass from inheritance, but on the level of individual objects
every object has a prototype (its "daddy") and can use the prototype's behavior

Using prototypes
A prototype can be used to create a new type of objects, much like a class.
Think of a prototype as a template object that we fill with allrelevant behavior for each object of the
"class" we're creating.
Steps to creating a new type using prototypes:

1. Write a constructor for the new type.
2. Initialize any object state in the constructor.
3. Add any desired behavior (methods) to the prototype.

Syntax for prototypes
// constructor
function className(parameters) {
 this.fieldName = value;
 ...
 this.fieldName = value;
}

// adding a method to the prototype

className.prototype.methodName = function(parameters) {
 statements;
}

inside the constructor and methods, can refer to the currentobject asthis

Prototype example
// Constructs a new Point object at the given initi al coordinates.
function Point(initialX, initialY) {
 this.x = initialX;
 this.y = initialY;
}

// Computes the distance between this Point and the given Point p.
Point.prototype.distance = function(p) {
 var dx = this.x - p.x;
 var dy = this.y - p.y;
 return Math.sqrt(dx * dx + dy * dy);
};

// Returns a text representation of this Point obje ct.

Point.prototype.toString = function() {
 return "(" + this.x + ", " + this.y + ")";
};

the above code could be saved into a filePoint.js
thetoString method works similarly as in Java

Creating classes

How Prototype (uppercase P) adds class semantics to
JavaScript

Classes and prototypes
limitations of prototype-based code:

unfamiliar / confusing to many programmers
somewhat unpleasant syntax
difficult to get inheritance-like semantics (subclassing, overriding methods)

Prototype library'sClass.create method makes a new class of objects
essentially the same as using prototypes, but uses a more familiar style and allows for richer
inheritance semantics

Creating a class
className = Class.create({
 // constructor
 initialize : function(parameters) {
 this.fieldName = value;
 ...
 },

 functionName : function(parameters) {
 statements;
 },
 ...
});

constructor is written as a specialinitialize function

Class.create example
Point = Class.create({
 // Constructs a new Point object at the given initi al coordinates.
 initialize: function(initialX, initialY) {
 this.x = initialX;
 this.y = initialY;
 },

 // Computes the distance between this Point and the given Point p.
 distance: function(p) {
 var dx = this.x - p.x;
 var dy = this.y - p.y;
 return Math.sqrt(dx * dx + dy * dy);
 },

 // Returns a text representation of this Point obje ct.
 toString: function() {
 return "(" + this.x + ", " + this.y + ")";
 }
});

Inheritance
className = Class.create(superclass, {
 ...
});

// Points that use "Manhattan" (non-diagonal) dista nces.
ManhattanPoint = Class.create(Point , {
 // Computes the Manhattan distance between this Poi nt and p.
 // Overrides the distance method from Point.
 distance: function(p) {
 var dx = Math.abs(this.x - p.x);
 var dy = Math.abs(this.y - p.y);
 return dx + dy;
 },

 // Computes this point's Manhattan Distance from th e origin.
 distanceFromOrigin: function() {
 return this.x + this.y;
 }
};

Referring to superclass: $super

name: function($super , parameters) {
 statements;
}

ManhattanPoint3D = Class.create(ManhattanPoint, {
 initialize: function($super , initialX, initialY, initialZ) {
 $super(initialX, initialY); // call Point constructor
 this.z = initialZ;
 },

 // Returns 3D "Manhattan Distance" from p.
 distance: function($super , p) {
 var dz = Math.abs(this.z - p.z);
 return $super(p) + dz;
 },

 // Overrides Point's toString method.
 toString: function() {
 return "(" + this.x + ", " + this.y + ", " + this.z + ")";
 }
};

can refer to superclass as$super in code

