Object-Oriented JavaScript

CSE 190 M (Web Programming) Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentare © Copyright 2008 Marty Stepp, Jessica
Miller, and Jim George, and are licensed under the CreatorarGons Attribution 2.5 License.

W3C K™ W3 cssyp

Lecture outline

e background / motivation
e Object-oriented JavaScript
e Creating classes

Why use classes and objects?

e JavaScript treats functions fasst-class citizens

e small programs are easily written without adding any class@bjects

o larger programs become cluttered with disorganized fonseti

e groupingrelated data and behavior into objects helps manage size and complexity, promotes e

Interacting with objects

You have alreadysed many types of JavaScript objects:

e Strings

e arrays

e HTML / XML DOM objects

e PrototypeAj ax. Request

e ScriptaculousEf f ect , Sor t abl e, Draggabl e

Creating a new anonymous object

var name = {
fieldName: value,

fieldName: value

}; J.S)
var pt = {

X: 4,

y: 3

};

alert(pt.x + ", " + pt.y); JS

e in JavaScript, you can create a new object without creatrigss
e the above is like #0i nt object; it has fields namex andy
¢ the object does not belong to any class; it is the only onesdiiitd

You've already done this...

new Aj ax. Request (
"http://exanple.com app. php",
{
method: "get",
onSuccess: ajaxSuccess

}
) ;

new Effect. Opacity("nmy_elenment”,
{
duration: 2.0,
from: 1.0,
to: 0.5

}
) ;

¢ the sets of parameters betwddnthat you passed to Prototype and Scriptaculous were agtuall
anonymous objects

Objects with behavior

var name = {

methodName: functi on(parameters) {
statements;

H
_—

JS

var pt = {
X: 4,
y: 3,
distanceFromOrigin: function() {
return this.x * this.x + this.y * this.y;
}
};
al ert (pt.distanceFromrigin()); //5

JS

o like in Java, objects' methods run "inside" that object
e inside an object's method, the object can refer to itsdiffass
¢ unlike in Java, the hi s keyword is mandatory in JS

A paradigm shift: prototypes

What if we want to create an entire new class, not just one new object?
(so that we could say new Poi nt ())

e JavaScript supports objects and is considered an objiectted language
e but, unlike JavajJavascript does NOT have classes
¢ JS instead supports a concept calbectotypes
(not to be confused with the Prototype library)
e prototype: a "super-object,” an ancestor of a JavaScript object
o like a superclass from inheritance, but on the level of irtilial objects
e every object has a prototype (its "daddy") and can use thefyye's behavior

Using prototypes

e A prototype can be used to create a new type of objects, mkelalclass.
e Think of a prototype as a template object that we fill withrallevant behavior for each object of the
"class" we're creating.
e Steps to creating a new type using prototypes:
1. Write a constructor for the new type.
2. Initialize any object state in the constructor.
3. Add any desired behavior (methods) to the prototype.

Syntax for prototypes

| constructor
function className(parameters) {
t hi s. fieldName = value;

t hi s. fieldName = value;

}

/ adding a method to the prototype
className. pr ot ot ype. methodName = functi on(parameters) {
statements;

} J S|

e inside the constructor and methods, can refer to the cuolgatt ad hi s

Prototype example

/I Constructs a new Point object at the given initi al coordinates.
function Point(initial X, initialY) {

this.x = initialX;

this.y = initial,;
}

/I Computes the distance between this Point and the given Point p.
Poi nt . prot otype. di stance = function(p) {

var dx = this.x - p.x;

var dy = this.y - p.y;

return Math.sqgrt(dx * dx + dy * dy);

I
/I Returns a text representation of this Point obje ct.
Poi nt. prototype.toString = function() {
return "(" + this.x +", " +this.y +")";
b

e the above code could be saved into aRtE nt . j s
e thet 0St r i ng method works similarly as in Java

Creating classes

How Prototype (uppercase P) adds class semantics to
JavaScript

Classes and prototypes

e limitations of pototype-based code:
o unfamiliar / confusing to many programmers
e somewhat unpleasant syntax
o difficult to get inheritance-like semantics (subclassiogerriding methods)

e Prototype library'sCl ass. cr eat e method makes a new class of objects
e essentially the same as using prototypes, but uses a moil@fastyle and allows for richer
inheritance semantics

Creating a class

className = Cl ass. create({
/I constructor
initialize : function(parameters) {
t hi s. fieldName = value;

},...

functionName : functi on(parameters) {
statements;

.
S JS

e constructor is written as a speciati ti al i ze function

Class.create

Point = C ass.create({

/I Constructs a new Point object at the given initi

example

initialize: function(initial X, initialY) {

b

/I Computes the distance between this Point and the

di

this.x = initial X
this.y = initial,

stance: function(p) {
var dx = this.x - p.x;
var dy = this.y - p.y;

return Math.sqrt(dx * dx + dy * dy);

al coordinates.

given Point p.

}
/I Returns a text representation of this Point obje ct.
toString: function() {
return "(" + this.x + ", " + this.y + ")";
}
1)
Inheritance
className = Cl ass. creat e(superclass, {
1) JS
/I Points that use "Manhattan" (non-diagonal) dista nces.
Manhat t anPoi nt = Cl ass. create(Point , {
/I Computes the Manhattan distance between this Poi nt and p.
/I Overrides the distance method from Point.
di stance: function(p) {
var dx = Math. abs(this.x - p.Xx);
var dy = Math.abs(this.y - p.y);
return dx + dy;
b
/I Computes this point's Manhattan Distance from th e origin.

b

di

}

stanceFronOrigin: function() {
return this.x + this.y;

Referring to superclass: $super

name: function($super , parameters) {

}

statements;

JS

Manhat t anPoi nt 3D = C ass. creat e(Manhat t anPoi nt, {

b

initialize: function($super , initialX, initialY, initialZz) {
$super(initialX, initialY); /'l call Point constructor
this.z = initial Z

b

/'l Returns 3D "Manhattan D stance" from p.
di stance: function($super , p) {

var dz = Math. abs(this.z - p.z);

return $super(p) + dz;

b

/I Overrides Point's toString method.
toString: function() {

}

return "(" + this.x +", " + this.y +", " + this.z + ")";

e can refer to superclass &super in code

