
Web Security Basics
CSE 190 M (Web Programming) Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp, Jessica
Miller, and Kevin Wallace, and are licensed under the Creative Commons Attribution 2.5 License.

Lecture outline
PHP/SQL review
some basic web attacks
breaking and securing an example page

PHP/SQL review

let's write an unsecure page using PHP and SQL

Recall: PHP MySQL functions
mysql_connect(" server", " username", " password")
connects to the given server; returnsFALSEon failure
mysql_select_db(" database")
chooses the given database; returnsFALSE if not found
mysql_query(" query")
executes the given SQL query on the currently selected database; returns a result-set object, orFALSE if
query fails
mysql_fetch_array(results)
returns one row from the given query result set as an associative array, orFALSEwhen no more rows
remain
mysql_error()
returns a string representing the most recent MySQL-related error that has occurred

Complete PHP MySQL example
connect to world database on local computer
$db = mysql_connect ("localhost", "traveler", "packmybags");

mysql_select_db ("world");

execute a SQL query on the database
$results = mysql_query ("SELECT * FROM Countries WHERE population > 100000000

loop through each country
while ($row = mysql_fetch_array ($results)) {
?>
 <?= $row["name"] ?>, ruled by <?= $row["head_of_state"] ?>
<?php
}
?>

Complete example w/ error checking
connect to world database on local computer
$db = mysql_connect("localhost", "traveler", "packm ybags");
check_result ($db);
check_result (mysql_select_db("world"));

execute a SQL query on the database
$results = mysql_query("SELECT * FROM Countries WHE RE population > 100000000
check_result ($results);

loop through each country
while ($row = mysql_fetch_array($results)) {
?>
 <?= $row["name"] ?>, ruled by <?= $row["head_ of_state"] ?>
<?php
}

stops the page if any MySQL error occurred
function check_result($value) {
 if (!$value) {
 die("SQL error occurred: " . mysql_error());
 }
}
?>

Simpsons database w/ passwords
students

id name email password

123 Bart bart@fox.com bartman

404 Ralph ralph@fox.com catfood

456 Milhouse milhouse@fox.com fallout

888 Lisa lisa@fox.com vegan

courses

id name teacher_id

10001 Computer Science 142 1234

10002 Computer Science 143 5678

10003 Computer Science 190M 9012

10004 Informatics 100 1234

grades

student_id course_id grade

123 10001 B-

123 10002 C

456 10001 B+

888 10002 A+

888 10003 A+

404 10004 D+

teachers

id name

1234 Krabappel

5678 Hoover

9012 Stepp

Web Security

breaking and securing web pages

CSE <= 190M
until now, we have assumed:

valid user input
non-malicious users
nothing will ever go wrong

this is unrealistic!

The real world
in order to write secure code, we must
assume:

invalid input
evil users
everybody is out to get you

trust nothing

HTML injection
a flaw where a user is able to inject arbitrary HTML content into your page

why is this bad? it allows others to:
disrupt the flow/layout of your site
put words into your mouth
(possibly) run JavaScript on other users' computers

kinds of injected content:
annoying:results.php?name=<blink>lololol</blink>
malicious and harmful:
onlinebanking.php?text=<script>transferMoneyTo("Evi l Kevin", 1000,
"USD");</script>

injecting JavaScript content is calledcross-site scripting

Securing against HTML injection
one idea: disallow harmful characters

HTML injection is impossible without < >
can strip those characters from incoming input
or, just reject the entire request if they are present

better idea: allow them, butescape them
< >→ < >
PHP'shtmlspecialchars function escapes HTML characters:

$username = htmlspecialchars ($_REQUEST["username"]);

SQL injection
a flaw where the user is able to inject arbitrary SQL commands into your query

$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$password'";
Password:' OR '1'='1

$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = ' ' OR '1'='1 '";
What will the above query return? Why is this bad?

Securing against SQL injection

similar to securing against HTML injection, escape the string before you include it in your query
use the PHPmysql_real_escape_string function

$username = mysql_real_escape_string($_REQUEST["username"]) ;
$password = mysql_real_escape_string($_REQUEST["password"]) ;
$query = "SELECT name, ssn, dob FROM users
WHERE username = '$username' AND password = '$passw ord'";

