
Form Validation with Regular Expressions
CSE 190 M (Web Programming), Spring 2008
University of Washington

References: JavaScriptKit, w3schools

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

What is form validation?
validation: ensuring that form's values are correct
some types of validation:

preventing blank values (email address)
ensuring the type of values

integer, real number, currency, phone number, Social Security number, postal address, email
address, date, credit card number, ...

ensuring the format and range of values (ZIP code must be a 5-digit integer)
ensuring that values fit together (user types email twice, and the two must match)

A real form that uses validation

Client vs. server-side validation
Validation can be performed:

client-side (in JavaScript code, before the form is submitted)
can lead to a better user experience, but not secure (why not?)

server-side (in PHP code, after the form is submitted)
needed for truly secure validation, but slower

both
best mix of convenience and security, but requires most effort to program

An example form to be validated
<form id="exampleform" action="http://foo.com/foo.php" method="GET">
 <fieldset>
 City: <input id="city" type="text" name="city" />

 State: <input id="state" type="text" name="state" size="2" />

 <input type="submit" />
 </fieldset>
</form>

City:
State:

Submit

Let's validate this form's data, first on the server and thenon the client.

Server-side validation code
$city = $_REQUEST["city"];
$state = $_REQUEST["state"];
if ($city == "" || strlen($state) != 2) {
?>

 <h2>Error, invalid city/state submitted.</h2>

<?php
}

basic idea: test request parameters' values in various ways, and if they are invalid, show an error message
(and don't save the data, etc.)

Client-side validation code
<form id="exampleform" action="http://foo.com/foo.php" method="GET">

window.onload = function() {
 $("exampleform").onsubmit = checkData;
};

function checkData(event) {
 if ($("city").value == "" || $("state").value.len gth != 2) {
 Event.stop(event);
 alert("Error, invalid city/state."); // show error message
 }
}

forms exposeonsubmit andonreset events
to abort a form submission, call Prototype'sEvent.stop on the event

Validation can be a pain!
client-side validation can't be trusted. The user could:

disable JavaScript in their browser
use Firebug to change the page or JS code
download the page and edit manually, then use it to submit data

validation code can take a lot of time / lines to write
testing for simple constraints (empty string, length 2) canbe easy, but...
How do you test for integers vs. real numbers vs. strings?
How do you test for a valid credit card number?
How do you test that a person's name has a middle initial?
(How do you test whether a given string matches a particular complex format?)

Regular expressions

Using regular expressions to validate forms

What is a regular expression?
/^[\w\.%\-]+@[\w.\-]+\.[a-zA-Z]{2,4}$/

regular expression ("regex"): a description of a pattern of text
can test whether a string matches the expression's pattern
can use a regex to search/replace characters in a string

regular expressions are extremely powerful but tough to read
(the above regular expression matches email addresses)
regular expressions occur in many places:

Java:Scanner , String 'ssplit method (CSE 143 sentence generator)
supported by JavaScript, PHP, and other languages
many text editors (TextPad) allow regexes in search/replace

Basic regular expressions
/abc/

regular expressions generally begin and end with/
the simplest regular expressions simply match a particularsubstring
the above regular expression matches any string containing"abc" :

YES: "abc" , "abcdef" , "defabc" , ".=.abc.=." , ...
NO: "fedcba" , "ab c" , "JavaScript" , ...

Wildcards: .
A dot . matches any character except a\n line break

/.oo.y/ matches"Doocy" , "goofy" , "PooPy" , ...
A trailing i at the end of a regex (after the closing/) signifies a case-insensitive match

/mart/i matches"Marty Stepp" , "smart fellow" , "WALMART", ...

Special characters: |, (), ^, \
| meansOR

/abc|def|g/ matches"abc" , "def" , or "g"
There's noAND symbol. Why not?

() are for grouping
/(Homer|Marge) Simpson/ matches"Homer Simpson" or "Marge Simpson"

^ matches the beginning of a line;$ the end
/^<!--$/ matches a line that consists entirely of"<!--"

\ starts anescape sequence
many characters must be escaped to match them literally:/ \ $. [] () ^ * + ?
/<br \/>/ matches lines containing"
" tags

Quantifiers: *, +, ?
* means 0 or more occurrences

/abc*/ matches"ab" , "abc" , "abcc" , "abccc" , ...
/a(bc)*/ matches"a" , "abc" , "abcbc" , "abcbcbc" , ...
/a.*a/ matches"aa" , "aba" , "a8qa" , "a!?_a" , ...

+ means 1 or more occurrences
/a(bc)+/ matches"abc" , "abcbc" , "abcbcbc" , ...
/Goo+gle/ matches"Google" , "Gooogle" , "Goooogle" , ...

? means 0 or 1 occurrences
/a(bc)?/ matches"a" or "abc"

More quantifiers: {min,max}
{ min, max} means betweenmin andmax occurrences (inclusive)

/a(bc){2,4}/ matches"abcbc" , "abcbcbc" , or "abcbcbcbc"
min or max may be omitted to specify any number

{2,} means 2 or more
{,6} means up to 6
{3} means exactly 3

Character sets: []
[] group characters into acharacter set;
will match any single character from the set

/[bcd]art/ matches strings containing"bart" , "cart" , and"dart"
equivalent to/(b|c|d)art/ but shorter

inside[] , many of the modifier keys act as normal characters
/what[!*?]*/ matches"what" , "what!" , "what?**!" , "what??!" , ...

What regular expression matches DNA (strings of A, C, G, or T)?
/[ACGT]+/

Character ranges: [start-end]
inside a character set, specify a range of characters with-

/[a-z]/ matches any lowercase letter
/[a-zA-Z0-9]/ matches any lower- or uppercase letter or digit

an initial^ inside a character set negates it
/[^abcd]/ matches any character other than a, b, c, or d

inside a character set,- must be escaped to be matched
/[+\-]?[0-9]+/ matches an optional+ or - , followed by at least one digit

What regular expression matches letter grades such as A, B+,or D- ?
/[ABCDF][+\-]?/

Escape sequences
special escape sequence character sets:

\d matches any digit (same as[0-9]); \D any non-digit ([^0-9])
\w matches any "word character" ([a-zA-Z_0-9]); \W any non-word char
\s matches any whitespace character (,\t , \n , etc.);\S any non-whitespace

email regex revisited:
/^[\w\.%\-]+@[\w.\-]+\.[a-zA-Z]{2,4}$/

What regular expression matches dollar amounts of at least $100.00 ?
/\$\d{3,}\.\d{2}/

Programming with regular expressions

How various web languages support regexes

Regular expressions in PHP (PDF)
syntax: strings that begin and end with/ , such as"/[AEIOU]+/"
preg_match(regex, string)
returnsTRUEif string matchesregex

for a case-insensitive match, place ani at end of regular expression (after closing/)
preg_replace(regex, replacement, string)
returns a new string with all substrings that matchregex replaced byreplacement
preg_split(regex, string)
returns an array of strings from givenstring broken apart using the givenregex as the delimiter (similar to
explode but more powerful)

Regular expression example
replace vowels with stars
$str = "the quick brown fox";
$str = preg_replace("/[aeiou]/", "*", $str);
 # "th* q**ck br*wn f*x"

break apart into words
$words = preg_split("/[]+/", $str);
 # ("th*", "q**ck", "br*wn", "f*x")

capitalize words that had 2+ consecutive vowels
for ($i = 0; $i < count($words); $i++) {
 if (preg_match("/*{2,}/", $words[$i])) {
 $words[$i] = strtoupper($words[$i]);
 }
} # ("th*", "Q**CK", "br*wn", "f*x")

notice how\ must be escaped to\\

PHP form validation w/ regexes
$state = $_REQUEST["state"];
if (! preg_match("/[A-Z]{2}/", $state)) {
?>

 <h2>Error, invalid state submitted.</h2>

<?php
}

usingpreg_match and well-chosen regexes allows you to quickly validate query parameters against
complex patterns

Regular expressions in JavaScript
string.match(regex)

if string fits the pattern, returns the matching text; else
returns null
can be used as a Boolean truthy/falsey test:
var name = $("name").value;
if (name.match(/[a-z]+/)) { ... }

an i can be placed after the regex for a case-insensitive matc h
name.match(/Marty/i) will match "marty", "MaRtY", ...

Replacing text with regular expressions
string.replace(regex, " text")

replaces the first occurrence of given pattern with the give n
text
var str = "Marty Stepp";
str.replace(/[a-z]/, "x") returns "M xrty Stepp"
returns the modified string as its result; must be stored
str = str.replace(/[a-z]/, "x")

a g can be placed after the regex for a global match (replace al l
occurrences)

str.replace(/[a-z]/g, "x") returns "Mxxxx Sxxxx"
using a regex as a filter

str = str.replace(/[^A-Z]+/g, "") turns str into "MS"

Debugging/testing regular expressions
open Firebug's Console tab and type in short regex code to
see whether it works

TextPad's Find and Replace dialogs allow regular
expressions

