
Scriptaculous
CSE 190 M (Web Programming), Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

Scriptaculous overview
Scriptaculous is another JavaScript library, built on top of Prototype, that adds:

visual effects (animation, fade in/out, highlighting)
drag and drop
Ajax features:

Auto-completing text fields (drop-down list of matching choices)
In-place editors (clickable text that you can edit and send to server)

some DOM enhancements
other stuff (unit testing, etc.)

Downloading and using Scriptaculous
<script src="http://www.cs.washington.edu/education/courses/cse190m/08sp/prototype.js"
 type="text/javascript"></script>

<script src="http://www.cs.washington.edu/education/courses/cse190m/08sp/scriptaculous.js"
 type="text/javascript"></script>

option 1: link to Scriptaculous on the CSE 190 M web site
notice that you must still link to Prototype before linking Scriptaculous

option 2: download the .zip file from their downloads page, and extract the 8.js files from itssrc/
folder to the same folder as your project

Learning about Scriptaculous
There's no complete online API documentation (argh), but the following are useful resources:

Scriptaculous wiki documentation
Visuals
Core FX
Combo FX
Sortables
Drag 'n' Drop 1 | 2 | 3 | 4
Auto-Completion 1 | 2
DOM

Scriptaculous Effects Cheat Sheet

Visual effects

Elements that appear, disappear, animate, grow, shrink,
highlight, jiggle, ...

Effects demo
Effect.Appear Effect.BlindDown Effect.Grow Effect.SlideDown (Appearing)

Effect.BlindUp Effect.DropOut Effect.Fade Effect.Fold Effect.Puff

Effect.Shrink Effect.SlideUp Effect.Squish Effect.SwitchOff (Disappearing)

Effect.Highlight Effect.Pulsate Effect.Shake Effect.toggle (blind) (Getting attention)

Click effects above

Adding effects to an element
new Effect.name(element or id);

new Effect.Shake("sidebar");

var buttons = $$("results > button");
for (var i = 0; i < buttons.length; i++) {
 new Effect.Fade(buttons[i]);
}

add an effect to an element by constructing anEffect and passing the element's DOM object or itsid
six core effects are used to implement all effects on the previous slides:

Effect.Highlight, Effect.Morph, Effect.Move, Effect.Opacity,
Effect.Parallel, Effect.Scale

Effect options
new Effect.name(element or id,
 {

 option: value,
 ...
 option: value,
 }
);

new Effect.Opacity("my_element",
 {
 duration: 2.0,
 from: 1.0,
 to: 0.5
 }
);

many effects can be customized by passing additional options
options:delay, direction, duration, fps, from, queue, sync, to, transition

Effect events
new Effect.Fade("my_element", {
 duration: 3.0,
 afterFinish: displayMessage
});

function displayMessage(effect) {
 alert(effect.element + " is done fading now!");
}

all effects have the following events that you can handle:beforeStart, beforeUpdate,
afterUpdate, afterFinish
theafterFinish event fires once the effect is done animating

useful do something to the element (style, remove, etc.) when effect is done
each of these events receives theEffect object as its parameter

its properties:element, options, currentFrame, startOn, finishOn

Auto-completion

Text fields that let you type in partial text and suggest values
that contain that text

Auto-completing text fields
Scriptaculous offers ways to make a text box that auto-completes based on
prefix strings:

Autocompleter.Local : auto-completes from an array of
choices
Ajax.Autocompleter : fetches and displays list of choices using
Ajax

Using Autocompleter.Local

new Autocompleter.Local(
 element or id of text box,
 element or id of div,
 array of choices,
 { options }
);

you must create an (initially empty)div to store the auto-completion matches
it will be inserted as aul that you can style with CSS
the user can select items by pressing Up/Down arrows; selected item is given aclass of
selected

pass the choices as an array of strings
pass any extra options as a fourth parameter between{ }

options:choices, partialSearch, fullSearch, partialChars, ignoreCase

Autocompleter.Local demo
<input id="bands70s" size="40" type="text" />
<div id="bandlistarea"></div>

window.onload = function() {
 new Autocompleter.Local(
 "bands70s",
 "bandlistarea",
 ["ABBA", "AC/DC", "Aerosmith", "America", "Bay City Rollers", ...],
 {}
);
};

Using Ajax.Autocompleter

new Ajax.Autocompleter(
 element or id of text box,
 element or id of div,
 url,
 { options }
);

when you have too many choices to hold them all in an array, youcan instead fetch subsets of choices from
the server using Ajax
instead of passing choices as an array, pass a URL from which to fetch them

the choices are sent back from the server as an HTMLul with li elements in it
options:paramName, tokens, frequency, minChars, indicator, updateElement,
afterUpdateElement, callback, parameters

Drag and Drop

Elements that can be moved by dragging them with the
mouse

Drag and drop facilities
Scriptaculous provides several classes for supporting drag-and-drop functionality:

Draggable : an element that can be dragged
Draggables : manages all Draggable objects on the page
Droppables : elements on which a Draggable can be dropped
Sortable : a list of items that can be reordered

Draggable

new Draggable(element or id,
 { options }
);

specifies an element as being able to be dragged
options:handle, revert, snap, zindex, constraint, ghosting, starteffect,
reverteffect, endeffect
event options:onStart, onDrag, onEnd

each callback accepts two parameters: theDraggable object, and the mouse event

Draggable example
<div id="draggabledemo1">Draggable demo. Default options.</div>
<div id="draggabledemo2">Draggable demo.
 {snap: [40,40], revert: true}</div>

window.onload = function() {
 new Draggable("draggabledemo1");
 new Draggable("draggabledemo2", {revert: true, snap: [40, 40]});
};

Draggables

a global helper for accessing/managing all Draggable objects on a page
(not needed for this course)
properties:drags, observers
methods:register, unregister, activate, deactivate, updateDrag, endDrag,
keyPress, addObserver, removeObserver, notify

Droppables

Droppables.add(element or id,
 { options }
);

specifies an element as being able to be dragged
options:accept, containment, hoverclass, overlap, greedy
event options:onHover, onDrop

each callback accepts three parameters: theDraggable, theDroppable, and the event
Shopping Cart demo

Draggable demo.
Default options.

Draggable demo.
{snap:[40, 40],
revert:true}

Drag/drop shopping demo

<div id="droptarget"></div>

window.onload = function() {
 new Draggable("product1");
 new Draggable("product2");
 Droppables.add("droptarget", {onDrop: productDrop});
}

function productDrop(drag, drop, event) {
 alert("You dropped " + drag.id);
}

Sortable

Sortable.create(element or id of list,
 { options }
);

specifies a list (ul, ol) as being able to be dragged into any order
implemented internally usingDraggables andDroppables
options:tag, only, overlap, constraint, containment, format, handle, hoverclass,
ghosting, dropOnEmpty, scroll, scrollSensitivity, scrollSpeed, tree, treeTag
event options:onChange, onUpdate

each callback receives the affected element as its parameter
NOTE: foronUpdate to work, eachli must have anid attribute

to make a list un-sortable again, callSortable.destroy on it

Sortable demo
<ol id="simpsons">
 <li id="simpsons_0">Homer
 <li id="simpsons_1">Marge
 <li id="simpsons_2">Bart
 <li id="simpsons_3">Lisa
 <li id="simpsons_4">Maggie

window.onload = function() {
 Sortable.create("simpsons");
};

Events on rearranged items
window.onload = function() {
 Sortable.create("simpsons", {
 onUpdate: listUpdate
 });
};

function listUpdate() {
 // I can do anything I like here; create an Ajax.Request, etc.
 new Effect.Shake("simpsons");
}

1. Homer
2. Marge
3. Bart
4. Lisa
5. Maggie

Persistent saved items
problem: rearranged items are not "remembered"; they return to their original order when we revisit the page

aSortable has events you can handle when the list order changes:
onChange : during a drag, each time the list order changes
onUpdate : when a drag is done and the order has changed

in a handler for aSortable's event, POST the data to the server to save it

1. Homer
2. Marge
3. Bart
4. Lisa
5. Maggie

Subtleties of sortable lists
if the elements of the list change after you make it sortable (if you add or remove an item using the DOM,
etc.), the Sortable-ness breaks

symptom: some elements will not be draggable, or can't be dragged past
must callSortable.create on the list again to fix it

theonUpdate eventwill not work unless eachli has anid of the formlistID_index, e.g.
"simpsons_0"

<ol id="simpsons">
 <li id="simpsons_0">Homer
 <li id="simpsons_1"u>Marge
 <li id="simpsons_2">Bart
 <li id="simpsons_3">Lisa
 <li id="simpsons_4">Maggie

In-place editing

Elements whose text content can be changed dynamically
(and saved to a server)

Ajax.InPlaceEditor

new Ajax.InPlaceEditor(element or id,
 url,
 { options }
);

options:okButton, okText, cancelLink, cancelText, savingText, clickToEditText,
formId, externalControl, rows, onComplete, onFailure, cols, size,
highlightcolor, highlightendcolor, formClassName, hoverClassName,
loadTextURL, loadingText, callback, submitOnBlur, ajaxOptions
event options:onEnterHover, onLeaveHover, onEnterEditMode, onLeaveEditMode

Ajax.InPlaceCollectionEditor

new Ajax.InPlaceCollectionEditor(element or id,
 url,
 {
 collection: array of choices,
 options
 }
);

a variation ofAjax.InPlaceEditor that gives a collection of choices
requirescollection option whose value is an array of strings to choose from
all other options are the same asAjax.InPlaceEditor

