
Extensible Markup Language (XML)
CSE 190 M (Web Programming), Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

What is XML?
a specification for creating languages to store data; used to share data between systems
a basic syntax of tags & attributes
languages written in XML specify tag names, attribute names, and rules of use
Example: XHTML is a "flavor" of XML

an adaptation of old HTML to fit XML's syntax requirements
XML specifies tag syntax:<... ...="..."></...>
HTML contributes tag names (e.g.h1 , img) and attributes (id /class on all elements,src /alt
on img tag)

An example XML file

<?xml version="1.0" encoding="UTF-8"?>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <subject>Reminder</subject>
 <message language="english">
 Don't forget me this weekend!
 </message>
</note>

XML syntax:

begins with an xml header tag, then a singledocument tag (in this case,note)
tag, attribute, and comment syntax is identical to XHTML's

What tags are legal in XML?
any tag you want; the person storing the data can make up their own tag structure
example: a person storing data about email messages may wanttags namedto , from , subject
example: a person storing data about books may want tags named book , title , author
"Garden State" XML: if you're feeling unoriginal, make up some XML nobody's ever done before

<bloop bleep="flibbetygibbet">quirkleblat</bloop>

Schemas
schema: an optional set of rules specifying which tags and attributes are valid, and how they can be used
together
used tovalidate XML files to make sure they follow the rules of that "flavor"

XHTML has a schema; W3C validator uses it to validate
doctype at top of XHTML file specifies schema

two ways to define a schema:
Document Type Definition (DTD)
W3C XML Schema

(we won't use schemas in this course)

Uses of XML
XML data comes from many sources on the web:

web servers store data as XML files
databases sometimes return query results as XML
web services use XML to communicate

XML languages are used for music, math, vector graphics
popular use: RSS for news feeds & podcasts

Pros and cons of XML
pro:

easy to read (for humans and computers)
standard format makes automation easy
don't have to "reinvent the wheel" for storing new types of data
international, platform-independent, open/free standard
can represent almost any general kind of data (record, list,tree)

con:
bulky syntax/structure makes files large; can decrease performance

example: quadratic formula in MathML
can be hard to "shoehorn" data into an intuitive XML format

won't need to know how for this class

Fetching XML using AJAX (template)

 new Ajax.Request(
 " url",
 {
 method: "get",
 onSuccess: functionName
 }
);
 ...

function functionName(ajax) {
 do something with ajax.responseXML;
}

ajax.response Text still contains XML code, but in plain text
ajax.response XML is a pre-parsed DOM object representing the XML file (more useful)

Using XML data in a web page
custom flavor of XML needs to be converted to XHTML, then injected into page
we will transform using Javascript XML DOM
basic technique:

1. fetch XML data using Ajax
2. examine theresponse XML object, using DOM methods and properties
3. extract data from XML elements and wrap them in HTML elements
4. inject HTML elements into web page

other ways to transform XML (not covered): CSS, XSLT

Recall: Javascript XML (XHTML) DOM
All of the DOM properties and methods we already know can be used on XML nodes:

properties:
firstChild , lastChild , childNodes , nextSibling , previousSibling ,
parentNode
nodeName, nodeType , nodeValue , attributes

methods:
appendChild , insertBefore , removeChild , replaceChild
getElementsByTagName , getAttribute , hasAttributes , hasChildNodes

Prototype methods:
ancestors , childElements , descendants , firstDescendant , descendantOf ,
next , previous , siblings , previousSiblings , nextSiblings , adjacent

XML DOM tree structure

the XML tags have a tree structure
DOM nodes have parents, children, and siblings

Analyzing a fetched XML file using DOM
Assume the following XML file is returned via an Ajax request:

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We can use DOM properties and methods onajax.responseXML :

// zeroth element of array of length 1
var foo = ajax.responseXML.getElementsByTagName("fo o")[0];

// same
var bar = foo.getElementsByTagName("bar")[0];

// array of length 2
var all_bazzes = foo.getElementsByTagName("baz");

// string "bleep"
var bloop = foo.getAttribute("bloop");

Recall: Pitfalls of the DOM
Using the same file:

<?xml version="1.0" encoding="UTF-8"?>
<foo bloop="bleep">
 <bar/>
 <baz><quux/></baz>
 <baz><xyzzy/></baz>
</foo>

We are reminded of some pitfalls of the DOM:

// works - XML prolog is removed from document tree
var foo = ajax.responseXML.firstChild;

// WRONG - just a text node with whitespace!
var bar = foo.firstChild;

// works
var first_baz = foo.getElementsByTagName("baz")[0];

// WRONG - just a text node with whitespace!
var second_baz = first_baz.nextSibling;

// works - why?
var xyzzy = second_baz.firstChild;

Larger XML file example

<?xml version="1.0" encoding="UTF-8"?>
<bookstore>
 <book category="cooking">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year><price>30.00</price>
 </book>
 <book category="computers">
 <title lang="en">XQuery Kick Start</title>
 <author>James McGovern</author>
 <year>2003</year><price>49.99</price>
 </book>
 <book category="children">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year><price>29.99</price>
 </book>
 <book category="computers">
 <title lang="en">Learning XML</title>
 <author>Erik T. Ray</author>
 <year>2003</year><price>39.95</price>
 </book>
</bookstore>

Navigating the node tree
don't haveid s orclass es to use to get specific nodes
firstChild /nextSibling properties are unreliable
best way to walk the tree is usinggetElementsByTagName :

node.getElementsByTagName(" tagName")

get an array of allnode's children that are of the given tag ("book" , "subject" , etc.)
can be called on the overall XML document or on a specific node

node.getAttribute(" attributeName")

gets an attribute from a node (e.g.,category , lang)
Prototype methods also useful:childElements , siblings , next /previous , etc.

Navigating node tree example

// make a paragraph for each book about computers
var books = ajax.responseXML.getElementsByTagName(" book");
for (var i = 0; i < books.length; i++) {
 var category = books[i].getAttribute("category");
 if (category == "computers") {
 var title = books[i].getElementsByTagName("titl e")[0].textContent;
 var author = books[i].getElementsByTagName("aut hor")[0].textContent;

 // make an XHTML <p> tag based on the book's XML da ta
 var p = document.createElement("p");
 p.textContent = title + ", by " + author;
 document.body.appendChild(p);
 }
}

A historical interlude: why XHTML?
in XML, different "flavors" can be combined in single document
theoretical benefit of including other XML data in XHTML

nobody does this
most embedded data are in non-XML formats (e.g., Flash)

non-XML data must be embedded another way (we'll talk about this later on)
requires browser/plugin support for other "flavor" of XML

development slow to nonexistent
most XML flavors are specialized uses

Why XML in AJAX?
most data you want are provided in XML

thede facto universal format
the browser can already parse XML (i.e., XHTML) into DOM objects

DOM only defined for XML-based formats, may not map directlyto another format
would have to manually parse a different format

simple formats can be parsed manually fromajax.responseText
most data are easier to manipulate as DOM objects than to parse manually

Practice problem: Animal game
Write a program that guesses which animal the user is thinking of. The program will arrive at a guess
based on the user's responses to yes or no questions. The questions come from a web app named
animalgame.php .

Practice problem: Animal game (cont'd)
The data comes in the following format:

<node nodeid=" id">
 <question> question</question>
 <yes nodeid=" id" />
 <no nodeid=" id" />
</node>

<node nodeid=" id">
 <answer> answer</answer>
</node>

to get a node with a given id:animalgame.php?nodeid= id
start by requesting the node withnodeid of 1 to get the first question

Attacking the problem
Questions we should ask ourselves:

How do I retrieve data from the web app? (what URL, etc.)
Once I retrieve a piece of data, what should I do with it?
When the user clicks "Yes", what should I do?
When the user clicks "No", what should I do?
How do I know when the game is over? What should I do in this case?

Debugging responseXML in Firebug

can examine the entire XML document, its node/tree structure

