
Unobtrusive JavaScript
CSE 190 M (Web Programming), Spring 2008
University of Washington

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

Lecture Outline
unobtrusive JavaScript

writing web pages where there is no JS code in your XHTML body
Accessing groups of DOM elements

processing groups of DOM element objects for events or styling purposes

Unobtrusive JavaScript

writing web pages where there is no JS code in your XHTML
body

Unobtrusive JavaScript idea
JavaScript event code seen previously wasobtrusive (in the XHTML)

this is bad style (mixes content and behavior)
now we'll see how to writeunobtrusive JavaScriptcode

XHTML with minimal JavaScript inside
uses the DOM to attach and execute all JavaScript functions
clean XHTML code, clear separation of content, presentation, behavior

Obtrusive event handlers (bad)

<body>
 <button id="ok" onclick="okayClick();">Click me</button>
 ...

// called when OK button is clicked
function okayClick() {
 $("ok").style.color = "red";
}

Click me

this is considered bad style in modern web programming (HTMLis cluttered with JavaScript calls)

Attaching an event handler in JavaScript code

element. event = functionName;

$("ok"). onclick = okayClick;

it is legal to attach event handlers to elements' DOM objectsin your JavaScript code
this is better style than attaching them in the XHTML
Where should we put the above code?

A failed attempt at being unobtrusive

...
 <head>
 <script type="text/javascript" src="myfile.js"></script>
 </head>
 <body>
 <div><button id="ok">Click Me</button></div>
...

// global code
$("ok").onclick = okayClick; // error: $("ok") is undefined

problem: global JS code runs the moment the script is loaded
script inhead is processed before page'sbody has loaded

no elements are available yet or can be accessed yet via the DOM
we need a way to attach the handler just as the page finishes loading

Browser/page events
onerror : an error occurs when loading a document or an image
onload : the browser loads the page
onresize : the browser window is resized
onunload : the browser exits the page

generally handlers for these are attached to the globalwindow object or the document'sbody

The window.onload event

window.onload = functionName; // global code

// this will run once the page has finished loading
function functionName() {
 element. event = functionName;
 element. event = functionName;
 ...
}

we want to attach our event handlers right after the page is done loading
this is exactly when thewindow.onload event occurs, so we'll handle that event

in window.onload handler we attach all the other handlers, which in turn run when those controls are
interacted with

An unobtrusive event handler

<body>
 <button id="ok">Click me</button>

...

window.onload = pageLoad;

// called when page loads; sets up event handlers
function pageLoad() {
 $("ok").onclick = okayClick;
}

function okayClick() {
 $("ok").style.color = "red";
}

Click me

Why is unobtrusive JavaScript better?
allows separationof web site into 3 major categories:

content (XHTML) - what is it?
presentation (CSS) - how does it look?
behavior (JavaScript) - how does it respond to user interaction?

page isn't cluttered with event code or stylistic information

Common unobtrusive JS errors
many students mistakenly write() when attaching the handler

window.onload = pageLoad();
window.onload = pageLoad;

$("ok").onclick = okayClick();
$("ok").onclick = okayClick;

ourJSLint checker will catch this mistake
what does it actually do if you have the() ?

event names are all lowercase, not capitalized like most variables

window.onLoad = pageLoad;
window. onload = pageLoad;

The keyword this

window.onload = pageLoad;
function pageLoad() {
 $("ok").onclick = okayClick; // bound to $("ok") here
}

function okayClick() { // okayClick knows what DOM object
 this.style.color = "red"; // it was called on
}

event handlers attached unobtrusively arebound to the element
inside the handler, the element can refer to itself asthis

also useful when the same handler is shared on multiple elements
doesn't work if you attach it as anonclick attribute in the XHTML

Fixing redundant code with this

<fieldset>
 <label><input id="Huey" type="radio" name="ducks" /> Huey</label>
 <label><input id="Dewey" type="radio" name="ducks " /> Dewey</label>
 <label><input id="Louie" type="radio" name="ducks " /> Louie</label>
</fieldset>

...
function processDucks() {
 if ($("huey").checked) {
 alert("Huey is checked!");
 } else if ($("dewey").checked) {
 alert("Dewey is checked!");
 } else {
 alert("Louie is checked!");
 }
 alert(this.id + " is checked!");
}

Anonymous functions

function(parameters) {
 the function's code;
}

sometimes you want to quickly create a function without giving it a name or explicit declaration
JavaScript allows you to declareanonymous functions
an anonymous function can be stored as a variable, attached to an event handler, etc.

Anonymous function example

window.onload = function() {
 $("ok").onclick = okayClick;
};

function okayClick() {
 this.style.color = "red";
}

Click me

or, the following is even legal (though harder to read and badstyle):

window.onload = function() {
 $("ok").onclick = function() {
 this.style.color = "red";
 };
};

Unobtrusive styling

function okayClick() {
 this.style.color = "red";
 this. addClassName("highlighted");
}

. highlighted { color: red; }

well-styled JavaScript code should contain as little CSS aspossible
whenever you can, you should instead use JS to set CSS classes/IDs on elements, and then define the styles
of those classes/IDs in your CSS file
Prototype methods for setting CSS classes:

addClassName , classNames , hasClassName , removeClassName
non-Prototype way of dealing with classes/IDs:

className , id properties

Accessing groups of DOM elements

processing groups of DOM element objects for events or
styling purposes

Motivation for grouping DOM elements
How would we do each of the following in our JavaScript code?

When the Go button is clicked, reposition all thediv s of classpuzzle to random x/y locations.
When the user hovers over the maze boundary, turn all maze walls red.
Change every other item in theul list with id of TAs to have a gray background.

Each task involves modifying a group of elements to have a common new feature or style...

Accessing DOM element objects
methods indocument object for getting DOM elements (* = Prototype):

document.getElementById (a.k.a.$ *) : DOM element that uses the givenid
document.getElementsByTagName :
returns array of DOM elements with the given XHTML element, such as"div"
document.getElementsByName :
returns array of DOM elements with givennameattribute (e.g. radio buttons in a group)
document.getElementsByClassName * :
returns array of DOM elements that use the givenclass attribute
document.getElementsBySelector * (a.k.a.$$ *) :
returns array of DOM elements that match the given CSS selector string, such as"div#sidebar
ul.news > li"

Getting all elements of a certain type
highlight all paragraphs in document

var allParas = document. getElementsByTagName("p");
for (var i = 0; i < allParas.length; i++) {
 allParas[i].style.backgroundColor = "yellow";
}

<body>
 <p>This is the first paragraph</p>
 <p>This is the second paragraph</p>
 <p>You get the idea...</p>
</body>

Combining with $

highlight all paragraphs inside of the section with ID"footer"

var footerParas = $("footer").getElementsByTagName("p");
for (var i = 0; i < footerParas.length; i++) {
 footerParas[i].style.backgroundColor = "yellow";
}

<p>This won't be returned!</p>
<div id="footer">
 <p>1234 Street</p>
 <p>Atlanta, GA</p>
</div>

Simplifying things with Prototype
highlight all paragraphs inside of the section with ID"footer"

var footerParas = $$("#footer p");
for (var i = 0; i < footerParas.length; i++) {
 footerParas[i].style.backgroundColor = "yellow";
}

Prototype's$$ function will return the array of DOM elements that matchesany CSS selector
this is a very powerful way to select exactly the elements on the page that you want

$$ and event handlers
listen to clicks on allbutton s with classcontrol directly inside of the section with ID"game"

window.onload = function() {
 var gameButtons = $$("#game > button.control");
 for (var i = 0; i < gameButtons.length; i++) {
 gameButtons[i].onclick = gameButtonClick;
 }
};

function gameButtonClick() {
 ...
}

you can use$$ and other DOM walking methods to unobtrusively attach eventhandlers to a group of
related elements in yourwindow.onload code

Common $$ errors
many students forget to write. or # in front of aclass / id

var gameButtons = $$("control");
var gameButtons = $$(" .control");

$$ returns an array, not a single element; must loop over the results and process each one

$$(".control").style.color = "red";
var gameButtons = $$(" .control");
for (var i = 0; i < gameButtons.length; i++) {
 gameButtons[i].style.color = "red";
}

Common question: Yes, you can select a group of elements using $$ even if your CSS file has no style
rule for that same group

Combining with $: Element.select
select allbutton s with classcontrol directly inside of the section with ID"game"

var gameArea = $("game");
var gameButtons = gameArea.select("button.control");
for (var i = 0; i < footerParas.length; i++) {
 gameButtons[i].style.color = "yellow";
}

theselect method returns an array of DOM element objects matching a given CSS selector within a
particular root element

much like$$, but only within part of the page
the above code grabs all buttons with class of"control" that are inside the element withid of "game"

