
Prototype and Events
CSE 190 M (Web Programming), Spring 2008
University of Washington

Reading: Chapter 4

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

Lecture Outline
the Prototype JavaScript library

useful additional objects, methods, and compatibility fixes
global DOM objects

DOM objects for accessing the document, browser window, etc.
more events

richer event handling, keyboard/mouse events, etc.

Prototype JavaScript library

A set of useful additional objects, methods, and cross-
browser compatibility fixes

Problems with JavaScript
JavaScript is a powerful language, but it has many flaws:

The DOM can be clunky to use
Several potentially useful objects and methods are missing
The same code doesn't always work the same way in every browser

code that works great in Firefox, Safari, ... will fail in IE and vice versa
Many web developers work around these problems with hacks:

// check if browser is IE (bad style!)
if (navigator.appName === "Microsoft Internet Explo rer") { ...

(Some) Things that break in IE
CSS:

the CSS box model, in many ways
fixed positioning

JavaScript:
getting the.value of many DOM controls (unless set explicitly)

<option value="Bike">Bike</option>

String.split (some incompatibilities)
timers withsetTimeout (some incompatibilities)
accessing String characters usingstr[i] notation
lots of DOM stuff
lots of event-handling stuff
Ajax programming (seen later)
...

Prototype

<script src="http://www.cs.washington.edu/education/courses/cse190m/08sp/prototype.js"

 type="text/javascript"></script>

<!-- or, -->
<script src="http://prototypejs.org/assets/2008/1/25/prototype-1.6.0.2.js"

 type="text/javascript"></script>

PrototypeJavaScript library adds many useful features to JavaScript:
many useful extensions to the DOM
added methods to String, Array, Date, Number, Object
improves event-driven programming
many cross-browser compatibility fixes
makes Ajax programmingeasier (seen later)

Prototype methods
methods added to Arrays

clear , clone , compact , each , first , flatten , from , indexOf , inspect , last , reduce , reverse , size ,
toArray , toJSON , uniq , without

methods added to Numbers
abs , ceil , floor , round , succ , times , toColorPart , toJSON, toPaddedString

methods added to all Objects
clone , extend , inspect, isArray , isElement , isFunction , isHash , isNumber , isString , isUndefined , keys ,
toHTML, toJSON, toQueryString , values

methods added to Strings
blank , camelize , capitalize , dasherize , empty , endsWith, escapeHTML, evalJSON , evalScripts ,
extractScripts , gsub , include , inspect , interpolate , isJSON , parseQuery , scan , startsWith, strip,
stripScripts , stripTags, sub , succ , times , toArray , toJSON , toQueryParams , truncate , underscore ,
unescapeHTML, unfilterJSON

Some Prototype features

$(" id")

returns the DOM object representing the element with the givenid

$$(" class")

returns an array of DOM objects representing elements that match the given CSS selector
Prototypeextends each DOM object you fetch with the above functions (adds methods to it)

Prototype DOM element methods
Prototype adds the following methods to every DOM element object:

absolutize , addClassName, addMethods , adjacent , ancestors , childElements, classNames, cleanWhitespace ,
clonePosition , cumulativeOffset , cumulativeScrollOffset , descendantOf , descendants, down, empty , extend ,
fire , firstDescendant , getDimensions , getElementsByClassName, getElementsBySelector, getHeight ,
getOffsetParent , getStyle, getWidth , hasClassName, hide, identify , immediateDescendants , insert , inspect ,
makeClipping , makePositioned , match , next, nextSiblings , observe , positionedOffset , previous,
previousSiblings , readAttribute , recursivelyCollect , relativize , remove, removeClassName, replace ,
scrollTo, select , setOpacity , setStyle , show, siblings, stopObserving , toggle , toggleClassName ,
undoClipping , undoPositioned , up, update , viewportOffset , visible , wrap , writeAttribute

Prototype in action

function makeFontBigger() {
 $("text").style.fontSize = parseInt(
 $("text"). getStyle("font-size")) + 2 + "pt";
}

$ function makes accessing elements easy
getStyle function added to DOM object allows accessing existing styles
works in all browsers!

Global DOM objects

Objects provided by the browser that let you learn about the
current document, browser window, URL, ...

The six global objects
Every Javascript program can refer to the following global objects:

document : current HTML page object model
window : the browser window
location : URL of the current HTML page
navigator : info about the web browser you're using
screen : info about the screen area occupied by the browser
history : list of pages the user has visited

The document object
represents the URL of the current web page
properties:

anchors , body , cookie , domain , forms , images , links , referrer , title , URL
methods (* means provided by Prototype):

getElementById (a.k.a.$ *)
getElementsByName
getElementsByTagName
getElementsByClassName * (a.k.a.$$ *)
close , open , write , writeln

complete list

The window object
represents the entire browser window; the top-level objectin DOM hierarchy
technically, all global code and variables become part of the window object
methods:

alert , confirm , prompt (popup boxes)
setInterval , setTimeout clearInterval , clearTimeout (timers)
open , close (popping up new browser windows)
blur , focus , moveBy, moveTo, print , resizeBy , resizeTo , scrollBy, scrollTo,

properties:
document , history , location , name

Popup windows with window.open

window.open("http://foo.com/bar.html", "My Foo Window",
 "width=900,height=600,scrollbars=1");

window.open pops up a new browser window
THIS method is the cause of all the terrible popups on the web!
some popup blocker software will prevent this method from running

The location object
represents the URL of the current web page
properties:

host , hostname , href , pathname , port , protocol , search
methods:

assign , reload , replace
complete list

The navigator object
information about the web browser application
properties:

appName, appVersion , browserLanguage , cookieEnabled , platform , userAgent
complete list

Some web programmers examine thenavigator object to see what browser is being used, and write
browser-specific scripts and hacks:

if (navigator.appName === "Microsoft Internet Explo rer") { ...

(careful programming and using Prototype reduce the need for this)

The screen object
information about the client's display screen
properties:

availHeight , availWidth , colorDepth , height , pixelDepth , width
complete list

The history object
list of sites the browser has visited in this window
properties:

length
methods:

back , forward , go
complete list
sometimes the browser won't let script code viewhistory properties, for security

Events

handling more user events such as mouse and keyboard
actions

Mouse events
XHTML elements have the following events:

clicking
onclick : user presses/releases mouse button on this element
ondblclick : user presses/releases mouse buttontwice on this element
onmousedown : user presses down mouse button on this element
onmouseup : user releases mouse button on this element

movement
onmouseover : mouse cursor enters this element's box
onmouseout : mouse cursor exits this element's box
onmousemove : mouse cursor moves around within this element's box

<div onmousemove="myFunction();">...</div>

Mouse event example

<div id="target" onmouseover="colorIt();">I'm OVER you!</div>

function colorIt() {
 $("target").style.backgroundColor = "red";
}

I'm OVER you!

Handling multiple mouse events

<div id="dare" onmousedown="colorIt();" onmouseup="uncolorIt();">
 Click me ... I dare you!
</div>

function colorIt() {
 $("dare").style.backgroundColor = "red";
}
function uncolorIt() {
 $("dare").style.backgroundColor = "white";
}

Click me ... I dare you!

Examining the mouse event object

function colorIt(event) {
 $("dare").style.backgroundColor = "red";
 $("dare").innerHTML = "You clicked (" + event.screenX +
 ", " + event.screenY + ")");
}

Click me ... I dare you!

a handler can accept an optional parameter representing theevent
event object holds several properties about the event that occurred

Event object properties
type : what kind of event, such as"click" or "mousedown"

same as event property name withouton prefix
useful if you use the same handler to handle multiple events

clientX , clientY : coordinates from top/left ofpage
screenX , screenY : coordinates from top/left ofscreen
complete list

Browser incompatibilities with events
fuzzy W3C specs and browser wars have led to event differences between browsers
IE6 sucks and doesn't support acceptingevent as a parameter

instead uses non-standard propertywindow.event
some properties inside this object are non-standard

even mighty Firefox is missing some standard properties (gasp!)
a cross-browser script can handle both

Poorly supported event properties
offsetX , offsetY : coordinates from top/left ofelement

Firefox uses non-standardlayerX , layerY properties instead
button : which mouse button was pressed/released, if any

IE returns 1/2/4 for left/right/middle button; Firefox returns 0/1/2 (standard)
Firefox also uses non-standardwhich property instead

srcElement : element that fired the event
Firefox uses non-standardtarget property instead

more incompatibilities

Click me: Which properties are supported?

Prototype and events

function name(event) {
 Event.extend(event);
 ...
}

calling Prototype'sEvent.extend repairs many event incompatibilities:
methods added to Events

element (replaceswhich / srcElement properties)
isLeftClick (replacesbutton / which properties)
pointerX , pointerY (replaceclientX , clientY properties)
findElement , stop , stopObserving , unloadCache

Keyboard events
DOM objects for HTML elements have the following properties:

onkeydown : user presses a key while this element has keyboard focus
onkeyup : user releases a key while this element has keyboard focus
onkeypress : user presses and releases a key while this element has keyboard focus
onfocus : this element gains keyboard focus
onblur : this element loses keyboard focus
focus: the attention of the user's keyboard (given to one element at a time)

Key event object properties
keyCode : ASCII numeric value of key that was pressed

to convert to a letter:String.fromCharCode(event.keyCode)
list of key values

altKey : true if Alt key is being held
ctrlKey : true if Ctrl key is being held
shiftKey : true if Shift key is being held

Which key event properties does your browser support?

Prototype and keyboard events

function name(event) {
 Event.extend(event);
 ...
}

calling Prototype'sEvent.extend adds these useful key code constants:
Event.KEY_BACKSPACE, Event.KEY_DELETE , Event.KEY_DOWN, Event.KEY_END ,
Event.KEY_ESC , Event.KEY_HOME, Event.KEY_LEFT , Event.KEY_PAGEDOWN,
Event.KEY_PAGEUP, Event.KEY_RETURN, Event.KEY_RIGHT , Event.KEY_TAB ,
Event.KEY_UP ,

(otherwise, you'd need to know what integer key code mapped to each of the above keys! which would be a
pain...)

Detecting Enter key on a text field

<input type="text" onkeypress="keyPress();" />

function keyPress(event) {
 Event.extend(event);
 if (event.keyCode == Event.KEY_RETURN) {
 // the user pressed Enter
 alert("You pressed the Enter key!");
 }
}

Text box events
these are supported by<input type="text"> , <textarea>

onselect : text within a text box is selected
onchange : content of a text box changes

Practice problem: Draggable map
One of the coolest features of Google Mapsis the ability to drag the map to move it around. Write a program
with a draggable map of Middle Earth using Javascript mouse event handlers. (See the background CSS
properties from the end of the CSS slides.)

