
Intro to DOM and Timers
CSE 190 M (Web Programming) Spring 2008
University of Washington

Reading: Chapter 3 sections 3.2 - 3.3

Except where otherwise noted, the contents of this presentation are © Copyright 2008 Marty Stepp and Jessica
Miller and are licensed under the Creative Commons Attribution 2.5 License.

Lecture Outline
Introduction to the Document Object Model (DOM)
JavaScript timers and animation
Unobtrusive JavaScript



Introduction to the Document Object Model
(DOM)

Used to manipulate XHTML page elements in your JS code

Basic idea
most JS code manipulates elements on an XHTML page

example: clicking a button makes text bold
in this section, we'll learn:

how to make our event handlers interact with elements on the page
how toproperly attach event handlers to elements,
without modifying the XHTML code (better style)

What is the DOM?
Document Object Model (DOM): a representation of
the current page as a set of JS objects

e.g. each tag is represented as an object
we can access these objects in several ways:

by traversing the page as a tree-like structure
asking for an element's DOM object by itsid

script code can view/modify these DOM objects,
which causes changes to appear on the web page



Accessing elements: The $ function

<span id="sale">Blowout sale!</span>
<button onclick="makeRed();">Make Text Red</button>

function makeRed() {
  $("sale").style.color = "red";
}

Blowout sale! Make Text Red

$ function returns the DOM object for an element with a givenid
$ is actually short for the commanddocument.getElementById

More about the $ function

function $(id) {
  return document.getElementById(id);
}

thedocument.getElementById function returns the DOM object for an element with a givenid
$("foo") === document.getElementById("foo")
document is one of several useful global JS objects we'll see later

$ is not part of standard JavaScript, but we'll have it in our programs
it makes our DOM code much more readable and saves you typing
many JavaScriptlibraries define a$ function for convenience

later in this course, we'll use a library named Prototype



$("username").type
$("username").size

$("username").value

$("main").tagName

$("main").className

$("main").innerHTML

Manipulating DOM objects

<input id="username" type="text" size="12" />
<button onclick="capitalize();">Capitalize It!</button>

function capitalize() {
  $("username").value = $("username").value.toUpperCase();
}

Capitalize It!

you can get/set most attributes from the XHTML via the DOM object
is "text"

is 12
is
whatever

value the user has typed
value exists in most XHTML UI controls (textarea, select, ...)

More DOM object properties

<div id="main" class="foo bar">
  <p>Hello, <em>very</em> happy to see you!</p>
</div>

tagName: the HTML tag of this element, capitalized
is "DIV"
className: the CSS class(es) of this element, if any
is "foo bar"
innerHTML: the HTML text content inside this element
is
"\n <p>Hello, <em>very</em> happy to see

you!</p>\n"



DOM style property

<button id="clickme" onclick="enlarge();">
Make me big!</button>

function enlarge() {
  $("clickme").style.fontSize = "42pt";
}

Make me big!

style property represents the combined CSS styles on this element
contains identical properties to those set in CSS, but withnamesLikeThis instead ofnames-like-
this

examples:backgroundColor, borderLeftWidth, fontFamily

Common DOM styling errors
many students forget to write.style when setting styles

$("somediv").color = "red";
$("somediv").style.color = "red";

ourJSLint checker will catch this mistake
style properties arelikeThis, notlike-this

$("somediv").style.font-size = "14pt";
$("somediv").style.fontSize = "14pt";

style properties must be set as Strings, often with units at the end

$("somediv").style.width = 200;
$("somediv").style.width = "200px";
$("somediv").style.padding = "0.5em";

write what you would have written in the CSS, but in quotes



JavaScript timers and animation

Repeatedly executing an event handler at timed intervals

Timer concepts
timer: executes an action after a
delay, or repeatedly at given intervals
JavaScript's implementation of
timers:

setTimeout,
setInterval,
clearTimeout,
clearInterval functions
an event handler function and a
delay (ms) are passed as
parameters to the above
functions
the function is called after the
delay

Timer functions
setTimeout(function, delay, [param1, param2, ...]);
arranges to call the given function after the given delay in ms, optionally passing it the parameters provided
setInterval(function, delay, [param1, param2, ...]);
arranges to call the given function repeatedly, once everydelay ms

bothsetTimeout andsetInterval return an object representing the timer
clearTimeout(timer);
clearInterval(timer);
stops the given timer object so it will not call its function any more



setTimeout example

function delayMsg() {
  setTimeout(booyah, 5000);
}
function booyah() {   // called when the timer goes off
  alert("Booyah!");
}

<button onclick="delayMsg();">Click me!</button>

Click me!

setTimeout returns instantly;delayMsg does not wait for the 5 sec to elapse

setInterval example

function repeatedMessage() {
  setInterval(rudyRudy, 1000);
}
function rudyRudy() {
  alert("Rudy!");
}

<button onclick="repeatedMessage();">Click me!</button>

Click me!

you may not actually want to click the button ...



Clearing a timer

var timer;
function repeatedMessage() {
  timer = setInterval(rudyRudy, 1000);

}
function rudyRudy() {
  alert("Rudy!");
}
function cancel() {
  clearInterval(timer);
}

<button onclick="repeatedMessage();">Rudy chant</button>
<button onclick="cancel();">Make it stop!</button>

Rudy chant Make it stop!

setInterval returns an object representing the timer
can be stored in a global variable

to cancel the timer, callclearInterval and pass the timer object

Passing parameters to timers

function delayedMultiply() {
  // 6 and 7 are passed to multiply when timer goes off
  var myTimer = setTimeout(multiply, 2000, 6, 7);
}
function multiply(a, b) {
  alert(a * b);
}

<button onclick="delayedMultiply();">Click me</button>

Click me

any parameters after the delay are passed to the timer function
(doesn't work in IE6)



Common timer errors
many students mistakenly write() when passing the function

setTimeout(booyah(), 2000);
setTimeout(booyah, 2000);

what does it actually do if you have the() ?



Unobtrusive JavaScript

Adding JavaScript to a page without editing the XHTML

onclick="badStyle();"

<button onclick="makeRed();">Make Text Red</button>

placingonclick and similar handlers in your XHTML file is actually bad style
XHTML is for content, not program code or style information
a page with many handlers becomes cluttered withonclicks
better approach:unobtrusive JavaScript

the goal:no JavaScript in our .html file except thescript tag link
giveids to all elements for which we want to handle events
attach the handlers to those eventsin the JavaScript file itself

Attaching event handler via DOM
<button onclick="makeRed();">Make Text Red</button>
<button id="makeredbutton">Make Text Red</button>

element.event = handlerFunction;

$("makeredbutton").onclick = makeRed;

instead of putting anonclick attribute in the XHTML,
put anid on that same XHTML element
in the JS code, grab the DOM object for that element and set its.onclick property



A failed attempt

// "global" code   (this example does not work!)
$("makeredbutton").onclick = makeRed;

function makeRed() {
  $("sale").style.color = "red";
}

The key question: Where in our JS code do we attach these eventhandlers?
We'd like to attach them when the page first loads.
The "global" area executestoo soon, because it's in the page'shead

(body hasn't been read or created yet by the browser)

The window.onload event

// "global" code
window.onload = pageLoad;

// runs when the page has completely finished loading
function pageLoad() {
  $("makeredbutton").onclick = makeRed;
}

function makeRed() {
  $("sale").style.color = "red";
}

globalwindow object'sonload event occurs when page is done loading
this is exactly when we want to attach our other event handlers



Common unobtrusive JS errors
many students mistakenly write() when attaching the handler

window.onload = pageLoad();
window.onload = pageLoad;

$("makeredbutton").onclick = makeRed();
$("makeredbutton").onclick = makeRed;

ourJSLint checker will catch this mistake
what does it actually do if you have the() ?

event names are all lowercase, not capitalized like most variables

window.onLoad = pageLoad;
window.onload = pageLoad;

The keyword this

window.onload = pageLoad;
function pageLoad() {
  $("makeredbutton").onclick = makeRed;
}

function makeRed() {
  this.style.color = "red";
}

Make Text Red

event handlers attached unobtrusively arebound to the element
doesn't work if you attach it as anonclick attribute in the HTML

inside the handler, the element can refer to itself asthis
also useful when the same handler is shared on multiple elements


