How to find the limits of algorithms?

Anup Rao

Computers

are really awesome,

Computers

are really awesome,

but is there something they cannot do?

Yes! [Godel,Turing 1930's]

What we do know

linear time algorithms are optimal

you have to read all the input

diagonalization (like halting)

does a given program stop in T steps? you need T steps to answer this

Common misconceptions

Sorting requires at least nlog(n) time

we don't know this

How can we prove lowerbounds on running time?

Multiparty communication complexity

If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows f(x)

Remarks essentially equivalent to algorithms If you can show that there is no such protocol, then there is no algorithm with running time program execution

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=0010011101010010010111100010101

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=001001110101001001011110001010101

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=<mark>00100111010</mark>1001000101111000101001

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=00100111010100000101111000101001

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=0010011101010010010<mark>11110001010</mark>01

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

[V77, HR14] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n),

x=0010011101010010010111100010101

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

2 party communication

What is f(X,Y) ?

What is f(X,Y) ?

 $m_1()$

What is f(X,Y) ?

 $m_1(X$

m₂(m₁,Y)

n bits

What is f(X,Y) ?

 $m_1(\lambda$

 $m_2(m_1, Y)$

n bits

What is f(X,Y) ?

 $m_1()$

 $m_2(m_1, Y)$

n bits

Is X=Y ?

Is X=Y ?

Requires n bits communication

Pigeonhole principle

n+1 pigeons cannot fit in n holes

Thm: Checking if X=Y requires n bits of communication.

Thm: Checking if X=Y requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

Thm: Checking if X=Y requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^n inputs (x,y) with x=y pigeons

Thm: Checking if X=Y requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^n inputs (x,y) with x=y pigeons There are $< 2^n$ possible transcripts m

holes

Thm: Checking if X=Y requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^n inputs (x,y) with x=y pigeons There are < 2^n possible transcripts m holes There must be x=y, x'=y', with x≠x', m(x,y) = m(x',y')

Thm: Checking if X=Y requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x,y) with x=y pigeons There are < 2^{n} possible transcripts m holes There must be x=y, x'=y', with x≠x', m(x,y) = m(x',y') But then m(x,y') = m(x,y)! The protocol has a bug.

X⊆{I,2,...,n}

Is |X∩Y|=0?

Requires n bits communication

Y⊆{I,2,...,n}

n bits

Thm: Checking if $|X \cap Y| = 0$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^n inputs (x,y) with y=complement(x) pigeons

There are < 2ⁿ possible transcripts m holes

There must be y=complement(x), y'=complement(x'), with $x \neq x'$, m(x,y) = m(x',y').

But then m(x,y') = m(x,y), but $|x \cap y'| > 0$.

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

each player represents a "critical" line of program execution

Overlapping information

n bits

Is X=Y=Z?

Requires n bits communication

Overlapping information Is X=Y=Z?

Y,Z

Overlapping information

Is X=Y=Z?

2 bits of communication suffice!

X=Y? Y=Z? determine answer

Y,Z

n bits

X,Y

Overlapping information

Is $|X \cap Y \cap Z|$ even?

[BNS,1990] n bits of communication required

X,Y⊆{I,2,...,n}

n bits

Z,X⊆{I,2,...,n}

n bits

Y,Z⊆{I,2,...,n}

from 1 to 2?

Conjecture: there is no way to do this with a short protocol

Conclusions

- Lots of cool combinatorial problems that we don't know how to solve
- Lots of room for interesting math

Thanks

Overlapping information

Is $|X \cap Y \cap Z| = 0$?

Open for a long time

X,Y⊆{I,2,...,n}

n bits

Z,X⊆{I,2,...,n}

n bits

 $Y,Z \subseteq \{1,2,...,n\}$

Overlapping information

Is $|X \cap Y \cap Z| = 0$?

Open for a long time

Other applications
Separations between circuit classes
proof complexity lower bounds

 oracle separations between complexity classes

Y,Z⊆{1,2,...,n}

n bits

n}

Prior work

k players, k sets, each knows k-1 sets

 $|X_1 \cap X_2 \cap \ldots \cap X_k| = 0?$

Reference	communication reqd.
[T03], [BPSW06]	$\log(n)/k$
[LS09], [CA08]	$n^{1/(k+1)}/2^{2^{O(k)}}$
[BH09]	$2^{\Omega(\sqrt{\log(n)/k})}/2^k$
[S12]	$n^{1/4}/2^{k/2}$
[<mark>S13</mark>]	$\sqrt{n}/k2^k$
[This work]	$n/4^k$

[G92]: $k^2n/2^k$ bits suffice

Prior work		
k players, k sets, each knows k-1 sets		
$ X_1 \cap X_2 \cap \ldots \cap X_k = 0$?		
Reference	communication reqd.	
[T03], [BPSW06]	Our bound $\log(n)/k$	
[LS09], [CA08]	 the simplest proof: 3 pages 	
[BH09]	 we also simplify Sherstov's randomized lower bound. 	
[S12]	skipping several steps	
[S13]	$\sqrt{n}/k2^k$	
[This work]	$n/4^k$	

[G92]: $k^2n/2^k$ bits suffice

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

In each part, $X_1,...,X_{k-1}$: random sets intersecting in one point, X_k : independent uniformly random set. (Note: these sets almost always intersect!)

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

In each part, $X_1,...,X_{k-1}$: random sets intersecting in one point, X_k : independent uniformly random set. (Note: these sets almost always intersect!)

 D_i : indicator variable for no intersection in i'th part
Proof Outline

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

In each part, $X_1,...,X_{k-1}$: random sets intersecting in one point, X_k : independent uniformly random set. (Note: these sets almost always intersect!)

 D_i : indicator variable for no intersection in i'th part

Thm [implicit in S12]: If π is computed in communication c

$$\left| \mathbb{E} \left[\pi(X_1, \dots, X_k) \cdot (-1)^{\sum_{i=1}^m D_i} \right] \right| \le 2^{c-2m}$$

Proof Outline

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

In each part, $X_1,...,X_{k-1}$: random sets intersecting in one point, X_k : independent uniformly random set. (Note: these sets almost always intersect!)

 D_i : indicator variable for no intersection in i'th part

Thm [implicit in S12]: If π is computed in communication c

$$\mathbb{E}\left[\pi(X_1,\ldots,X_k)\cdot(-1)^{\sum_{i=1}^m D_i}\right] \le 2^{c-2m}$$

If π computes disjointness, when $\pi = 1, \sum_{i=1}^{m} D_i = m$.

Proof Outline

k players, k sets, each knows k-1 sets. $|X_1 \cap X_2 \cap ... \cap X_k| = 0$?

Partition universe into $m=n/16(4^k)$ parts, each of size $16(4^k)$

In each part, $X_1,...,X_{k-1}$: random sets intersecting in one point, X_k : independent uniformly random set. (Note: these sets almost always intersect!)

 D_i : indicator variable for no intersection in i'th part

Thm [implicit in S12]: If π is computed in communication c

$$\mathbb{E}\left[\pi(X_1,\ldots,X_k)\cdot(-1)^{\sum_{i=1}^m D_i}\right] \le 2^{c-2m}$$

m

If π computes disjointness, when $\pi = 1, \sum_{i=1}^{n} D_i = m$.

Thus LHS= $2^{-m} \leq 2^{c-2m} \Rightarrow c \geq m$

Define f(j) probability protocol outputs 1 when $\sum D_i = j$.

i=1

m

Define f(j) probability protocol outputs 1 when $\sum_{i=1}^{j} D_i = j$.

Thm: If f(j) defined using a protocol, $\forall r > c$ $\left| \mathbb{E} \left[f((D_1 + \ldots + D_r)m/r) \cdot (-1)^{D_1 + \ldots + D_r} \right] \right| \le 2^{-12r}.$

Define f(j) probability protocol outputs 1 when $\sum_{i=1}^{j} D_i = j$.

Thm: If f(j) defined using a protocol, $\forall r > c$ $\left| \mathbb{E} \left[f((D_1 + \ldots + D_r)m/r) \cdot (-1)^{D_1 + \ldots + D_r} \right] \right| \le 2^{-12r}.$

Thm: f can be approximated by a degree c polynomial.

Define f(j) probability protocol outputs 1 when $\sum_{i=1}^{j} D_i = j$.

Thm: If f(j) defined using a protocol, $\forall r > c$ $\left| \mathbb{E} \left[f((D_1 + \ldots + D_r)m/r) \cdot (-1)^{D_1 + \ldots + D_r} \right] \right| \le 2^{-12r}.$

Thm: f can be approximated by a degree c polynomial.

Open problems

- Prove lower bounds of n for these communication models. (Anything better than n/2^k).
- Candidate problem:

- Input: k matchings of size n
 Start at red, walk clockwise for n/100 steps, do we end at even vertex?
- Careful: When k = 3, there is a protocol that can compute 3rd step in o(n) communication!
 [PRS97]

Algorithms vs Multiparty Communication

[Valiant] If $f(x):\{0,1\}^n \rightarrow \{0,1\}$ can be computed in parallel time O(log n), with total work O(n), Candidate Hard

x=001001110101001

protocol with n/loglog(n) players

- player knows some n^{0.1} bits of x
- player broadcasts 1 bit
- at end, someone knows f(x)

Given a graph on n vertices, where every vertex has out-degree 1, is 1 connected to 2?

Function

each player represents a "critical" line of program execution