How to find the limits of algorithms?

Anup Rao

Computers

Computers

are really awesome,

Computers

are really awesome,

but is there something they cannot do?

Yes! [Godel,Turing 1930's]

Yes! [Godel,Turing 1930's]

Halting problem $\underset{\substack{\text { progam } \\ \text { code }}}{\text { Haput }}= \begin{cases}1 & \text { if } P(x) \text { halts } \\ 0 & \text { if } P(x) \text { runs forever }\end{cases}$

Yes! [Godel,Turing 1930's]

Halting problem $\underset{\substack{\text { progam } \\ \text { code }}}{\text { Haput }}= \begin{cases}1 & \text { if } P(x) \text { halts } \\ 0 & \text { if } P(x) \text { runs forever }\end{cases}$

Thm: No program can compute $\operatorname{Halt}(\mathrm{P}, \mathrm{x})$

Yes! [Godel,Turing 1930's]

Halting problem

$$
\underset{\substack{\text { program input } \\ \text { code }}}{\text { Halt }(P, x)}= \begin{cases}1 & \text { if } P(x) \text { halts } \\ 0 & \text { if } P(x) \text { runs forever }\end{cases}
$$

Thm: No program can compute Halt(P,x)
Pf: Suppose program H computes Halt. Define program G:

$$
G(P)= \begin{cases}0 & \text { if } H(P, P) \text { outputs } 0 \\ \text { loop forever } & \text { if } H(P, P) \text { outputs } 1\end{cases}
$$

Yes! [Godel,Turing 1930's]

Halting problem $\underset{\substack{\text { program input } \\ \text { code }}}{\text { Hal }(P, x)}= \begin{cases}1 & \text { if } P(x) \text { halts } \\ 0 & \text { if } P(x) \text { runs forever }\end{cases}$

Thm: No program can compute Halt(P, x)
Pf: Suppose program $H(P, x)$ computes Halt. Let

$$
G(P)= \begin{cases}0 & \text { if } H(P, P) \text { outputs } 0 \\ \text { loop forever } & \text { if } H(P, P) \text { outputs } 1\end{cases}
$$

If $G(G)=0$, then $H(G, G)=0$, so H has a bug.
If $G(G)$ loops forever, then $H(G, G)=1$, so H has a bug.

The biggest gap in our understanding of algorithms

Is the running time of my algorithm optimal?

don't know
theoretician
user

The biggest gap in our understanding of algorithms

Is my algorithm for matrix multiplication optimal?

don't know
theoretician
user

The biggest gap in our understanding of algorithms

Is my algorithm for multiplying two numbers optimal?

don't know
theoretician
user

The biggest gap in our understanding of algorithms

theoretician

What we do know

linear time algorithms are optimal

you have to read all the input

diagonalization (like halting)

does a given program stop in T steps? you need T steps to answer this

Common misconceptions

Sorting requires at least nlog(n) time
we don't know this

How can we prove lowerbounds on running time?

Multiparty communication complexity

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits

- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ can be computed in time t ,

protocol with $\sim t$ players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

$$
f(x)=1
$$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ can be computed in time t ,

protocol with ~t players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$

$$
f(x)=1
$$

Algorithms vs Multiparty Communication

If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in time t,

protocol with $\sim t$ players

- player knows 1 bit of x
- player sends 1 bit
- player receives ≤ 2 bits
- at end, someone knows $f(x)$
- essentially equivalent to algorithms
- if you can show that there is no such protocol, then there is $\frac{-1}{x}=1$ no algorithm with running time t

$$
f(x)=1
$$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$$
x=001001110101001000101111000101001
$$

protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$x=001001110101001000101111000101001$
protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
each player represents a "critical" line of program execution
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$\mathrm{x}=001001110101001000101111000101001$
protocol with $n / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$$
x=001001110101001000101111000101001
$$

protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$x=001001110101001000101111000101001$
protocol with $n / \log \log (\mathrm{n})$ players

- player knows some $\mathrm{n}^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$$
x=001001110101001000101111000101001
$$

protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$,

$$
x=001001110101001000101111000101001
$$

protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Algorithms vs Multiparty Communication

[V77, HR14] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $\mathrm{O}(\log \mathrm{n})$, with total work $\mathrm{O}(\mathrm{n})$,

$$
x=001001110101001000101111000101001
$$

protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $n^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

2 party communication

X
n bits

What is $f(X, Y)$?

Y
n bits

2 party communication

X
n bits

What is $f(X, Y)$?

Y
n bits

2 party communication

$\underset{n}{\mathrm{X} \text { bits }}$

What is $f(X, Y)$?

Y
n bits

2 party communication

What is $f(X, Y)$?

2 party communication

What is $f(X, Y)$?

What we know about communication

Is $X=Y$?

Y
n bits

What we know about communication

Is $X=Y$?

Requires n bits communication

Pigeonhole principle

$\mathrm{n}+1$ pigeons cannot fit in n holes

What we know about communication

Thm: Checking if $X=Y$ requires n bits of communication.

What we know about communication

Thm: Checking if $X=Y$ requires n bits of communication.

Pf: Suppose there is protocol with $<\mathrm{n}$ bits of communication.

What we know about communication

Thm: Checking if $\mathrm{X}=\mathrm{Y}$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x, y) with $x=y$
pigeons

What we know about communication

Thm: Checking if $\mathrm{X}=\mathrm{Y}$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x, y) with $\mathrm{x}=\mathrm{y}$
There are $<2^{n}$ possible transcripts m
pigeons
holes

What we know about communication

Thm: Checking if $X=Y$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x, y) with $x=y \quad$ pigeons
There are $<2^{n}$ possible transcripts m holes
There must be $x=y, x^{\prime}=y^{\prime}$, with $x \neq x^{\prime}, m(x, y)=m\left(x^{\prime}, y^{\prime}\right)$

What we know about communication

Thm: Checking if $X=Y$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x, y) with $x=y$
There are $<2^{n}$ possible transcripts m
pigeons
holes

There must be $x=y, x^{\prime}=y^{\prime}$, with $x \neq x^{\prime}, m(x, y)=m\left(x^{\prime}, y^{\prime}\right)$
But then $m\left(x, y^{\prime}\right)=m(x, y)$! The protocol has a bug.

What we know about communication

$$
X \subseteq\{1,2, \ldots, n\}
$$

n bits

Is $|\mathrm{X} \cap \mathrm{Y}|=0$?
Requires n bits communication

$$
\mathrm{Y} \subseteq\{1,2, \ldots, n\}
$$

n bits

What we know about communication

Thm: Checking if $|\mathrm{X} \cap \mathrm{Y}|=0$ requires n bits of communication.

Pf: Suppose there is protocol with < n bits of communication.

There are 2^{n} inputs (x, y) with $\mathrm{y}=$ complement (x) pigeons
There are $<2^{n}$ possible transcripts m
holes
There must be $y=\operatorname{complement}(x), y^{\prime}=\operatorname{complement}\left(x^{\prime}\right)$, with $x \neq x^{\prime}, m(x, y)=m\left(x^{\prime}, y^{\prime}\right)$.
But then $m\left(x, y^{\prime}\right)=m(x, y)$, but $\left|x \cap y^{\prime}\right|>0$.

Algorithms vs Multiparty

 Communicatemarks[Valiant] If $f(x):\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ can be computed in parallel time $O(\log n)$, with total work $O(n)$, when players have overlapping

$x=001001110101001000101111000101001$

protocol with $n / \log \log (\mathrm{n})$ players

- player knows some $\mathrm{n}^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

Overlapping information

Is $X=Y=Z$?

Requires n bits communication

Y
n bits

$$
\underset{\mathrm{n} \text { bits }}{\mathrm{Z}}
$$

Overlapping information

X,Y
n bits
Is $X=Y=Z$?

Overlapping information

 Is $X=Y=Z$?

2 bits of communication suffice! $X=Y$? $Y=Z$? determine answer

Overlapping information

Is $|\mathrm{X} \cap \mathrm{Y} \cap \mathrm{Z}|$ even?

[BNS,1990] n bits of communication required

$X, Y \subseteq\{I, 2, \ldots, n\}$
n bits

$\mathrm{Y}, \mathrm{Z} \subseteq\{1,2, \ldots, \mathrm{n}\}$
n bits

$$
\mathrm{Z}, \mathrm{X} \subseteq\{1,2, \ldots, \mathrm{n}\}
$$

Algorithms vs Multiparty Communication

Is there a path from 1 to 2?

Algorithms vs Multiparty Communication

Is there a path
from 1 to 2 ?
Conjecture: there is no way to do this with a short protocol

Conclusions

- Lots of cool combinatorial problems that we don't know how to solve
- Lots of room for interesting math

Thanks

Overlapping information

$$
\text { Is }|\mathrm{X} \cap \mathrm{Y} \cap \mathrm{Z}|=0 \text { ? }
$$

Open for a long time

$\mathrm{Y}, \mathrm{Z} \subseteq\{1,2, \ldots, \mathrm{n}\}$
n bits

$$
\mathrm{Z}, \mathrm{X} \subseteq\{1,2, \ldots, \mathrm{n}\}
$$

Overlapping information

$$
\text { Is }|\mathrm{X} \cap \mathrm{Y} \cap \mathrm{Z}|=0 \text { ? }
$$

Open for a long time

Other applications
, 6 séparations between circuit classes

- proof complexity lower bounds
- oracle separations between complexity classes
$\mathrm{Y}, \mathrm{Z} \subseteq\{1,2, \ldots, \mathrm{n}\}$
n bits

Prior work

k players, k sets, each knows $k-1$ sets

$$
\left|X_{1} \cap X_{2} \cap \ldots \cap X_{k}\right|=0 ?
$$

Reference	communication reqd.
[T03], [BPSW06]	$\log (n) / k$
[LSO9], [CA08]	$n^{1 /(k+1)} / 2^{2^{O(k)}}$
[BH09]	$2^{\Omega(\sqrt{\log (n) / k})} / 2^{k}$
[S12]	$n^{1 / 4} / 2^{k / 2}$
[S13]	$\sqrt{n} / k 2^{k}$
[This work]	$n / 4^{k}$

[G92]: $k^{2} n / 2^{k}$ bits suffice

Prior work

k players, k sets, each knows $k-1$ sets

$$
\left|X_{1} \cap X_{2} \cap \ldots \cap X_{k}\right|=0 ?
$$

Proof Outline

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?

Proof Outline

k players, k sets, each knows $k-1$ sets. $\left|X_{1} \cap X_{2} \cap \ldots \cap X_{k}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$
In each part, $X_{1, \ldots, X_{k-1}}$: random sets intersecting in one point, X_{k} : independent uniformly random set. (Note: these sets almost always intersect!)

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$
In each part, X_{1}, \ldots, X_{k-1} : random sets intersecting in one point, X_{k} : independent uniformly random set. (Note: these sets almost always intersect!)
D_{i} : indicator variable for no intersection in i'th part

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$
In each part, X_{1}, \ldots, X_{k-1} : random sets intersecting in one point, X_{k} : independent uniformly random set. (Note: these sets almost always intersect!)
D_{i} : indicator variable for no intersection in i'th part

Thm [implicit in S12]: If π is computed in

 communication c$$
\left|\mathbb{E}\left[\pi\left(X_{1}, \ldots, X_{k}\right) \cdot(-1)^{\sum_{i=1}^{m} D_{i}}\right]\right| \leq 2^{c-2 m}
$$

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$
In each part, X_{1}, \ldots, X_{k-1} : random sets intersecting in one point, X_{k} : independent uniformly random set. (Note: these sets almost always intersect!)
D_{i} : indicator variable for no intersection in i'th part

Thm [implicit in S12]: If π is computed in

 communication c$$
\left|\mathbb{E}\left[\pi\left(X_{1}, \ldots, X_{k}\right) \cdot(-1)^{\sum_{i=1}^{m} D_{i}}\right]\right| \leq 2^{c-2 m}
$$

If π computes disjointness, when $\pi=1, \sum_{i=1}^{m} D_{i}=m$.

Proof Outline

k players, k sets, each knows $\mathrm{k}-1$ sets. $\left|\mathrm{X}_{1} \cap \mathrm{X}_{2} \cap \ldots \cap \mathrm{X}_{\mathrm{k}}\right|=0$?
Partition universe into $m=n / 16\left(4^{k}\right)$ parts, each of size $16\left(4^{k}\right)$
In each part, X_{1}, \ldots, X_{k-1} : random sets intersecting in one point, X_{k} : independent uniformly random set. (Note: these sets almost always intersect!)
D_{i} : indicator variable for no intersection in i'th part
Thm [implicit in S12]: If π is computed in communication c

$$
\left|\mathbb{E}\left[\pi\left(X_{1}, \ldots, X_{k}\right) \cdot(-1)^{\sum_{i=1}^{m} D_{i}}\right]\right| \leq 2^{c-2 m}
$$

If π computes disjointness, when $\pi=1, \sum_{i=1}^{m} D_{i}=m$.
Thus LHS $=2^{-m} \leq 2^{c-2 m} \Rightarrow c \geq m$

Randomized lower bound

Randomized lower bound

Define $f(j)$ probabilly procococo outưuts 1 when $\sum_{i=1}^{m} D_{i}=j$.

Randomized lower bound

Thm: If $f(j)$ defined using a protocol, $\forall r>c$

$$
\left|\mathbb{E}\left[f\left(\left(D_{1}+\ldots+D_{r}\right) m / r\right) \cdot(-1)^{D_{1}+\ldots+D_{r}}\right]\right| \leq 2^{-12 r} .
$$

Randomized lower bound

Thm: If $f(j)$ defined using a protocol, $\forall r>c$

$$
\left|\mathbb{E}\left[f\left(\left(D_{1}+\ldots+D_{r}\right) m / r\right) \cdot(-1)^{D_{1}+\ldots+D_{r}}\right]\right| \leq 2^{-12 r}
$$

Thm: f can be approximated by a degree c polynomial.

Randomized lower bound

Thm: If $f(j)$ defined using a protocol, $\forall r>c$

$$
\left|\mathbb{E}\left[f\left(\left(D_{1}+\ldots+D_{r}\right) m / r\right) \cdot(-1)^{D_{1}+\ldots+D_{r}}\right]\right| \leq 2^{-12 r}
$$

Thm: f can be approximated by a degree c polynomial.

Thm [NS]: such a poly must have degree
\sqrt{m}

Open problems

- Prove lower bounds of n for these communication models. (Anything better than $n / 2^{\mathrm{k}}$).
- Candidate problem:

- Input: k matchings of size n
- Start at red, walk clockwise for $\mathrm{n} / 100$ steps, do we end at even vertex?
- Careful: When $\mathrm{k}=3$, there is a protocol that can compute 3rd step in o(n) communication!
[PRS97]

Algorithms vs Multiparty Communication

[Valiant] If $f(x):\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed in parallel time $\mathrm{O}(\log \mathrm{n})$, with total work $\mathrm{O}(\mathrm{n})$, Candidate Hard

Given a graph on n vertices, where every $x=001001110101001$ protocol with $\mathrm{n} / \log \log (\mathrm{n})$ players

- player knows some $\mathrm{n}^{0.1}$ bits of x
- player broadcasts 1 bit
- at end, someone knows $f(x)$

