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Yes! [Godel,Turing 1930’s]

Halting problem

Thm: No program can compute Halt(P,x)

Pf: Suppose program H(P,x) computes Halt. Let

G(P) = { 0 if H(P,P) outputs 0

loop forever if H(P,P) outputs 1

If G(G) = 0, then H(G,G)=0, so H has a bug.
If G(G) loops forever, then H(G,G)=1, so H has a bug.

Halt( P, x) = { 1 if P(x) halts

0 if P(x) runs foreverprogram 
code

input
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Is my algorithm for 
multiplying two numbers 

optimal?
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Is my 
algorithm for SAT 

optimal?

That’s the famous P vs 
NP question. We’ve given it 

a lot of thought, and 
we don’t know.

user

theoretician

The biggest gap in our 
understanding of algorithms



What we do know

linear time algorithms are 
optimal

you have to read all the input

diagonalization (like halting)

does a given program stop in T steps? you need T steps 
to answer this



Common misconceptions

Sorting requires at least nlog(n) time

                we don’t know this



How can we prove 
lowerbounds on running 

time?

Multiparty communication complexity
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If f(x):{0,1}n→{0,1} can be computed in time t,
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• player knows 1 bit of x
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• at end, someone knows f(x)
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f(x)=1
each player represents a line of 

program execution

Remarks

• essentially equivalent to 
algorithms
• if you can show that there is 
no such protocol, then there is 
no algorithm with running time 
t
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• at end, someone knows f(x)
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• player broadcasts 1 bit
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[V77, HR14] If f(x):{0,1}n→{0,1} can be computed 
in parallel time O(log n), with total work O(n),
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2 party communication

X
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Y
n bits

m1(X)
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X
n bits

Y
n bits



Pigeonhole principle

n+1 pigeons cannot fit in n holes
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What we know about 
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n 
bits of communication.

Pf: Suppose there is protocol with 
< n bits of communication. 

There are 2n inputs (x,y) with x=y

There are < 2n possible transcripts m 

pigeons

holes

There must be x=y, x’=y’, with x≠x’, m(x,y) = m(x’,y’)

m(x,y)

But then m(x,y’) = m(x,y)! The protocol has a bug.
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What we know about 
communication

Is |X⋂Y|=0 ?

X

n bits

Y

n bits

Thm: Checking if |X⋂Y|=0 
requires n bits of communication.

Pf: Suppose there is protocol with 
< n bits of communication. 

There are 2n inputs (x,y) with y=complement(x)

There are < 2n possible transcripts m 

pigeons
holes

There must be y=complement(x), y’=complement(x’), with 
x≠x’, m(x,y) = m(x’,y’).

m(x,y)

But then m(x,y’) = m(x,y), but |x⋂y’|>0.



Algorithms vs Multiparty 
Communication

[Valiant] If f(x):{0,1}n→{0,1} can be computed in 
parallel time O(log n), with total work O(n),

x=001001110101001000101111000101001

0 1 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

each player represents a “critical” line of 
program execution

Remarks

when players have overlapping 
information, protocols can be 
much more efficient

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)
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Overlapping information

X,Y

Is X=Y=Z ?

n bits

Y,Z
n bits

Z,X
n bits

2 bits of 
communication suffice!

X=Y? Y=Z? determine answer



Overlapping information

X,Y⊆{1,2,...,n}

Is |X⋂Y⋂Z| even?

n bits

Y,Z⊆{1,2,...,n}
n bits

Z,X⊆{1,2,...,n}
n bits

[BNS,1990] n bits of communication 
required
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Algorithms vs Multiparty 
Communication

1 2 Is there a path 
from 1 to 2?

10 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

Conjecture: there 
is no way to do 
this with a short 

protocol



Conclusions

• Lots of cool combinatorial problems that 
we don’t know how to solve

• Lots of room for interesting math



Thanks
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Overlapping information

X,Y⊆{1,2,...,n}

Is |X⋂Y⋂Z|=0?

n bits

Y,Z⊆{1,2,...,n}
n bits

Z,X⊆{1,2,...,n}
n bits

Open for a long time

Other applications

• separations between circuit 
classes
• proof complexity lower 
bounds
• oracle separations between 
complexity classes
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Prior work
k players, k sets, each knows k-1 sets

|X1⋂X2⋂...⋂Xk|=0?

Reference communication reqd.

[T03], [BPSW06]

[LS09], [CA08]

[BH09]

[S12]

[S13]

[This work]

log(n)/k

n1/(k+1)/22
O(k)

2⌦(

p
log(n)/k)/2k

p
n/k2k

n1/4/2k/2

n/4k

[G92]:            bits suffice       k2n/2k

Our bound

•   the simplest proof: 3 pages
•   we also simplify Sherstov’s 
randomized lower bound, 
skipping several steps
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Randomized lower bound
Define            probability protocol outputs 1 when                        . f(j)

mX

i=1

Di = j

fThm:    can be approximated by a degree     polynomial.c

Thm [NS]: such a 
poly must have degree 

p
m

0 1 2 3 4 ... m

1

poly computing disjointness must look like this

Thm: If      defined using a protocol, 8r > c
��E

⇥
f((D1 + . . .+Dr)m/r) · (�1)D1+...+Dr

⇤��  2�12r.

f(j)



Open problems

• Prove lower bounds of n for these 
communication models. (Anything better 
than n/2k).

• Candidate problem:

X1

X2X3

X4

• Input: k matchings of size n
• Start at red, walk clockwise for 
n/100 steps, do we end at even 
vertex? 
• Careful: When k = 3, there is a 
protocol that can compute 3rd 
step in o(n) communication! 
[PRS97]



Algorithms vs Multiparty 
Communication

[Valiant] If f(x):{0,1}n→{0,1} can be computed in 
parallel time O(log n), with total work O(n),

x=001001110101001000101111000101001

0 1 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

each player represents a “critical” line of 
program execution

Candidate Hard 
Function

Given a graph on n 
vertices, where every 
vertex has out-degree 1, 
is 1 connected to 2?protocol with n/loglog(n) players

• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)


