
How to find the limits of
algorithms?

Anup Rao

Computers

Computers

are really awesome,

Computers

are really awesome,

but is there something they
cannot do?

Yes! [Godel,Turing 1930’s]

Yes! [Godel,Turing 1930’s]

Halting problem
Halt(P, x) = { 1 if P(x) halts

0 if P(x) runs foreverprogram
code

input

Yes! [Godel,Turing 1930’s]

Halting problem

Thm: No program can compute Halt(P,x)

Halt(P, x) = { 1 if P(x) halts

0 if P(x) runs foreverprogram
code

input

Yes! [Godel,Turing 1930’s]

Halting problem

Thm: No program can compute Halt(P,x)
Pf: Suppose program H computes Halt. Define program G:

G(P) = { 0 if H(P,P) outputs 0

loop forever if H(P,P) outputs 1

Halt(P, x) = { 1 if P(x) halts

0 if P(x) runs foreverprogram
code

input

Yes! [Godel,Turing 1930’s]

Halting problem

Thm: No program can compute Halt(P,x)

Pf: Suppose program H(P,x) computes Halt. Let

G(P) = { 0 if H(P,P) outputs 0

loop forever if H(P,P) outputs 1

If G(G) = 0, then H(G,G)=0, so H has a bug.
If G(G) loops forever, then H(G,G)=1, so H has a bug.

Halt(P, x) = { 1 if P(x) halts

0 if P(x) runs foreverprogram
code

input

The biggest gap in our
understanding of algorithms

Is the running time of
my algorithm optimal?

don’t know

user

theoretician

Is my algorithm for
matrix multiplication

optimal?

don’t know

user

theoretician

The biggest gap in our
understanding of algorithms

Is my algorithm for
multiplying two numbers

optimal?

don’t know

user

theoretician

The biggest gap in our
understanding of algorithms

Is my
algorithm for SAT

optimal?

That’s the famous P vs
NP question. We’ve given it

a lot of thought, and
we don’t know.

user

theoretician

The biggest gap in our
understanding of algorithms

What we do know

linear time algorithms are
optimal

you have to read all the input

diagonalization (like halting)

does a given program stop in T steps? you need T steps
to answer this

Common misconceptions

Sorting requires at least nlog(n) time

 we don’t know this

How can we prove
lowerbounds on running

time?

Multiparty communication complexity

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1
1

1

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1
1

1
1

1

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1
1

1
1

1 0
0

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1
1

1
1

1 0
0

0

each player represents a line of
program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=0
0

0
1

1
1

1
1

1 0
0

0
0

0

1 1
1

1
0

1

1
0

f(x)=1
each player represents a line of

program execution

If f(x):{0,1}n→{0,1} can be computed in time t,

Algorithms vs Multiparty
Communication

If f(x):{0,1}n→{0,1} can be computed in time t,

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=000

11

11

11

00

0

00

11
11

0

1

1

0

f(x)=1
each player represents a line of

program execution

Remarks

Algorithms vs Multiparty
Communication

If f(x):{0,1}n→{0,1} can be computed in time t,

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=000

11

11

11

00

0

00

11
11

0

1

1

0

f(x)=1
each player represents a line of

program execution

Remarks

• essentially equivalent to
algorithms

Algorithms vs Multiparty
Communication

If f(x):{0,1}n→{0,1} can be computed in time t,

protocol with ~t players
• player knows 1 bit of x
• player sends 1 bit
• player receives ≤2 bits
• at end, someone knows f(x)

x1=0 x4=0

x7=1
x1=0

x2=1

x2=1

x3=1

x4=0

x6=1

x7=1

x9=0

x2=1

x2=1

x8=000

11

11

11

00

0

00

11
11

0

1

1

0

f(x)=1
each player represents a line of

program execution

Remarks

• essentially equivalent to
algorithms
• if you can show that there is
no such protocol, then there is
no algorithm with running time
t

Algorithms vs Multiparty
Communication

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

x=001001110101001000101111000101001

each player represents a “critical” line of
program execution

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1 1

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1 1 0

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1 1 0 0

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1 1 0 0 0

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

Algorithms vs Multiparty
Communication

x=001001110101001000101111000101001

0 1 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

each player represents a “critical” line of
program execution

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

[V77, HR14] If f(x):{0,1}n→{0,1} can be computed
in parallel time O(log n), with total work O(n),

2 party communication

X

What is f(X,Y) ?

n bits

Y
n bits

2 party communication

X

What is f(X,Y) ?

n bits

Y
n bits

m1(X)

2 party communication

X

What is f(X,Y) ?

n bits

Y
n bits

m1(X)

m2(m1,Y)

2 party communication

X

What is f(X,Y) ?

n bits

Y
n bits

m1(X)

m2(m1,Y)

2 party communication

X

What is f(X,Y) ?

n bits

Y
n bits

m1(X)

m2(m1,Y)

f(X,Y)

What we know about
communication

Is X=Y ?

X
n bits

Y
n bits

What we know about
communication

Is X=Y ?

Requires n bits
communication

X
n bits

Y
n bits

Pigeonhole principle

n+1 pigeons cannot fit in n holes

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

m(x,y)

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

m(x,y)

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

There are 2n inputs (x,y) with x=y pigeons

m(x,y)

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

There are 2n inputs (x,y) with x=y

There are < 2n possible transcripts m

pigeons

holes

m(x,y)

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

There are 2n inputs (x,y) with x=y

There are < 2n possible transcripts m

pigeons

holes

There must be x=y, x’=y’, with x≠x’, m(x,y) = m(x’,y’)

m(x,y)

What we know about
communication

Is X=Y ?

X

n bits

Y

n bits

Thm: Checking if X=Y requires n
bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

There are 2n inputs (x,y) with x=y

There are < 2n possible transcripts m

pigeons

holes

There must be x=y, x’=y’, with x≠x’, m(x,y) = m(x’,y’)

m(x,y)

But then m(x,y’) = m(x,y)! The protocol has a bug.

What we know about
communication

X⊆{1,2,...,n}

Is |X⋂Y|=0?

n bits

Y⊆{1,2,...,n}
n bits

Requires n bits
communication

What we know about
communication

Is |X⋂Y|=0 ?

X

n bits

Y

n bits

Thm: Checking if |X⋂Y|=0
requires n bits of communication.

Pf: Suppose there is protocol with
< n bits of communication.

There are 2n inputs (x,y) with y=complement(x)

There are < 2n possible transcripts m

pigeons
holes

There must be y=complement(x), y’=complement(x’), with
x≠x’, m(x,y) = m(x’,y’).

m(x,y)

But then m(x,y’) = m(x,y), but |x⋂y’|>0.

Algorithms vs Multiparty
Communication

[Valiant] If f(x):{0,1}n→{0,1} can be computed in
parallel time O(log n), with total work O(n),

x=001001110101001000101111000101001

0 1 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

each player represents a “critical” line of
program execution

Remarks

when players have overlapping
information, protocols can be
much more efficient

protocol with n/loglog(n) players
• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

Overlapping information

X

Is X=Y=Z ?

n bits

Y
n bits

Z
n bits

Requires n bits
communication

Overlapping information

X,Y

Is X=Y=Z ?

n bits

Y,Z
n bits

Z,X
n bits

Overlapping information

X,Y

Is X=Y=Z ?

n bits

Y,Z
n bits

Z,X
n bits

2 bits of
communication suffice!

X=Y? Y=Z? determine answer

Overlapping information

X,Y⊆{1,2,...,n}

Is |X⋂Y⋂Z| even?

n bits

Y,Z⊆{1,2,...,n}
n bits

Z,X⊆{1,2,...,n}
n bits

[BNS,1990] n bits of communication
required

Algorithms vs Multiparty
Communication

1 2

Is there a path
from 1 to 2?

0

Algorithms vs Multiparty
Communication

1 2

Is there a path
from 1 to 2?

10

Algorithms vs Multiparty
Communication

1 2

Is there a path
from 1 to 2?

10 1

Algorithms vs Multiparty
Communication

1 2

Is there a path
from 1 to 2?

10 1 0

Algorithms vs Multiparty
Communication

1 2 Is there a path
from 1 to 2?

10 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

Conjecture: there
is no way to do
this with a short

protocol

Conclusions

• Lots of cool combinatorial problems that
we don’t know how to solve

• Lots of room for interesting math

Thanks

Overlapping information

X,Y⊆{1,2,...,n}

Is |X⋂Y⋂Z|=0?

n bits

Y,Z⊆{1,2,...,n}
n bits

Z,X⊆{1,2,...,n}
n bits

Open for a long time

Overlapping information

X,Y⊆{1,2,...,n}

Is |X⋂Y⋂Z|=0?

n bits

Y,Z⊆{1,2,...,n}
n bits

Z,X⊆{1,2,...,n}
n bits

Open for a long time

Other applications

• separations between circuit
classes
• proof complexity lower
bounds
• oracle separations between
complexity classes

Prior work
k players, k sets, each knows k-1 sets

|X1⋂X2⋂...⋂Xk|=0?

Reference communication reqd.

[T03], [BPSW06]

[LS09], [CA08]

[BH09]

[S12]

[S13]

[This work]

log(n)/k

n1/(k+1)/22
O(k)

2⌦(

p
log(n)/k)/2k

p
n/k2k

n1/4/2k/2

n/4k

[G92]: bits suffice k2n/2k

Prior work
k players, k sets, each knows k-1 sets

|X1⋂X2⋂...⋂Xk|=0?

Reference communication reqd.

[T03], [BPSW06]

[LS09], [CA08]

[BH09]

[S12]

[S13]

[This work]

log(n)/k

n1/(k+1)/22
O(k)

2⌦(

p
log(n)/k)/2k

p
n/k2k

n1/4/2k/2

n/4k

[G92]: bits suffice k2n/2k

Our bound

• the simplest proof: 3 pages
• we also simplify Sherstov’s
randomized lower bound,
skipping several steps

Proof Outline

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

In each part, X1,...,Xk-1: random sets intersecting in one point, Xk : independent
uniformly random set. (Note: these sets almost always intersect!)

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

Di: indicator variable for no intersection in i’th part

In each part, X1,...,Xk-1: random sets intersecting in one point, Xk : independent
uniformly random set. (Note: these sets almost always intersect!)

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

Di: indicator variable for no intersection in i’th part

In each part, X1,...,Xk-1: random sets intersecting in one point, Xk : independent
uniformly random set. (Note: these sets almost always intersect!)

Thm [implicit in S12]: If is computed in
communication c ���E

h
⇡(X1, . . . , Xk) · (�1)

Pm
i=1 Di

i��� 2c�2m

⇡

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

Di: indicator variable for no intersection in i’th part

In each part, X1,...,Xk-1: random sets intersecting in one point, Xk : independent
uniformly random set. (Note: these sets almost always intersect!)

Thm [implicit in S12]: If is computed in
communication c ���E

h
⇡(X1, . . . , Xk) · (�1)

Pm
i=1 Di

i��� 2c�2m

⇡

If computes disjointness, when .⇡ ⇡ = 1,
mX

i=1

Di = m

Proof Outline
k players, k sets, each knows k-1 sets. |X1⋂X2⋂...⋂Xk| =0 ?

Partition universe into m=n/16(4k) parts, each of size 16(4k)

Di: indicator variable for no intersection in i’th part

In each part, X1,...,Xk-1: random sets intersecting in one point, Xk : independent
uniformly random set. (Note: these sets almost always intersect!)

Thm [implicit in S12]: If is computed in
communication c ���E

h
⇡(X1, . . . , Xk) · (�1)

Pm
i=1 Di

i��� 2c�2m

⇡

If computes disjointness, when .⇡ ⇡ = 1,
mX

i=1

Di = m

2�m 2c�2m) c � mThus LHS=

Randomized lower bound

Randomized lower bound
Define probability protocol outputs 1 when . f(j)

mX

i=1

Di = j

Randomized lower bound
Define probability protocol outputs 1 when . f(j)

mX

i=1

Di = j

Thm: If defined using a protocol, 8r > c
��E

⇥
f((D1 + . . .+Dr)m/r) · (�1)D1+...+Dr

⇤�� 2�12r.

f(j)

Randomized lower bound
Define probability protocol outputs 1 when . f(j)

mX

i=1

Di = j

fThm: can be approximated by a degree polynomial.c

Thm: If defined using a protocol, 8r > c
��E

⇥
f((D1 + . . .+Dr)m/r) · (�1)D1+...+Dr

⇤�� 2�12r.

f(j)

Randomized lower bound
Define probability protocol outputs 1 when . f(j)

mX

i=1

Di = j

fThm: can be approximated by a degree polynomial.c

Thm [NS]: such a
poly must have degree

p
m

0 1 2 3 4 ... m

1

poly computing disjointness must look like this

Thm: If defined using a protocol, 8r > c
��E

⇥
f((D1 + . . .+Dr)m/r) · (�1)D1+...+Dr

⇤�� 2�12r.

f(j)

Open problems

• Prove lower bounds of n for these
communication models. (Anything better
than n/2k).

• Candidate problem:

X1

X2X3

X4

• Input: k matchings of size n
• Start at red, walk clockwise for
n/100 steps, do we end at even
vertex?
• Careful: When k = 3, there is a
protocol that can compute 3rd
step in o(n) communication!
[PRS97]

Algorithms vs Multiparty
Communication

[Valiant] If f(x):{0,1}n→{0,1} can be computed in
parallel time O(log n), with total work O(n),

x=001001110101001000101111000101001

0 1 1 0 0 0 1 0 1 0 1 0
1

f(x)=1

each player represents a “critical” line of
program execution

Candidate Hard
Function

Given a graph on n
vertices, where every
vertex has out-degree 1,
is 1 connected to 2?protocol with n/loglog(n) players

• player knows some n0.1 bits of x
• player broadcasts 1 bit
• at end, someone knows f(x)

