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Natural Language Processing (NLP) 
- a quick overview	




What is NLP? 
Fundamental goal: deep understand of human language 

–  Not just string processing or keyword matching!



•  Simple: spelling 
correction, text 
categorization…

•  Complex: speech 
recognition, machine 
translation, dialog 
interfaces, question 
answering…

•  Unknown: human-level 
comprehension (is this 
just NLP?)

What is NLP? 



Semantic Ambiguity

•  Direct Meanings:
–  It understands you like your mother (does) [presumably well]

–  It understands (that) you like your mother

–  It understands you like (it understands) your mother
•  But there are other possibilities, e.g. mother could mean: 

–  a woman who has given birth to a child
–  a stringy slimy substance consisting of yeast cells and bacteria; is 

added to cider or wine to produce vinegar

•  Context matters, e.g. what if previous sentence was: 
–  Wow, Amazon predicted that you would need to order a big 

batch of new vinegar brewing ingredients. ! 

At last, a computer that understands you like your mother. 

[Example from L. Lee]



A phone that understands our questions 



US Cities: Its largest 
airport is named for a 
World War II hero; its 
second largest, for a 
World War II battle.

Jeopardy! World Champion 





Natural Language Processing (NLP) 
- a quick overview	




Natural Language Processing (NLP) 
- recent research (of our own)	




What text understanding 
is really about?



Three Different Layers of Reading 

Reading the author’s mind 









framing in media 
& political discourse 

(Yano et al., 2010)
(Recasens et al., 2013)

dodging
(Nguyen et al 2013)

hedging
(Choi et al. 2012)

(Ganter and 
Strube, 2009) 
(Kilicoglu and 
Bergler 2008) 



syntactic packaging
"My$toy$broke"$$

instead$of$$
"I$broke$my$toy"

(Greene and Resnik 2009)
deception

fake online reviews

“Eunsol” Choi





authorship verification

authorship obfuscation

demographics: gender, 
nationality, age, vocation

personality, psychological state: 
happy, authoritative, depressed... 

intellectual traits & development: 
literary success

Hempel Capote Hemingway 

Woolf 



From Language to the Mind 



From Language to the Mind 

Is it even possible? (without full semantic understanding)
•  It is more about “HOW” it is said than “WHAT” is said. 

“HOW” it is said
i.e., Writing Style



From Language to the Mind 

Is it even possible? (without full semantic understanding)
•  It is more about “HOW” it is said than “WHAT” is said. 
•  We --humans– also often rely on “overall impression”. 

“HOW” it is said
i.e., Writing Style

Computers at times can do better than humans! 



“So how can you spot a fake review? Unfortunately, it’s 
difficult, but with some technology, there are a few warning 
signs:”

“To obtain a deeper understanding of the nature of 
deceptive reviews, we examine the relative utility of three 
potentially complementary framings of our problems.”

“As online retailers increasingly depend on reviews as a sales 
tool, an industry of fibbers and promoters has sprung up to 
buy and sell raves for a pittance.”

Research Papers?   New York Times?   Blogs?

Research Paper (ACL, 2011)

Blog Post 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!        

What is “Writing Style” ? 



What is “Writing Style” ? 

“HOW” it is said
i.e., Writing Style

Genre Categorization: 
Petrenz and Webber, 2011; Finn et al., 2006; Argamon et al., 2003; Kessler et al., 1997

Authorship Attribution: 
Holmes 1985, Raghavan et al., 2010; Koppel and Shler, 2004; Gamon, 2004; 



Many more 
possibilities...
Swanson and Charniak, 
2012; Xu et al., 2012; 
Iyyer et al., 2014; 
Hardisty et al., 2010

Alan Ritter



From Language to the Mind 

Unconventional Case Studies:
I.  Deceptive Reviews (ACL 2011)
II.  Success of Novels (EMNLP 2013)

“HOW” it is said
i.e., Writing Style



Motivation

Online reviews 
= shopping tool
 
Commercial impact
" potential target for 
deceptive reviews



“My husband and I stayed at the James Chicago Hotel for 
our anniversary. This place is fantastic! We knew as soon as 
we arrived we made the right choice! The rooms are 
BEAUTIFUL and the staff very attentive and wonderful! The 
area of the hotel is great, since I love to shop I couldn’t ask 
for more! We will definitely be back to Chicago and we will 
for sure be back to the James Chicago.”

Deceptive or Truthful?



“I have stayed at many hotels traveling for both business 
and pleasure and I can honestly say that The James is tops. 
The service at the hotel is first class. The rooms are modern 
and very comfortable. The location is perfect within walking 
distance to all of the great sights and restaurants. Highly 
recommend to both business travellers and couples.”

“My husband and I stayed at the James Chicago Hotel for 
our anniversary. This place is fantastic! We knew as soon as 
we arrived we made the right choice! The rooms are 
BEAUTIFUL and the staff very attentive and wonderful! The 
area of the hotel is great, since I love to shop I couldn’t ask 
for more! We will definitely be back to Chicago and we will 
for sure be back to the James Chicago.”



Gathering Data 

•  Label existing reviews?
–  Can’t manually do this



Gathering Data 

•  Label existing reviews?
–  Can’t manually do this

#  Instead, create new reviews
–  By hiring people to write fake positive reviews 
–  Amazon Mechanical Turk

•  20 hotels
•  20 reviews / hotel
•  Offer $1 / review
•  400 reviews



How good are humans  
in detecting deceptive reviews?


•  80 truthful and 80 deceptive reviews
•  3 undergraduate judges





Human Performance

61.9!

56.9!

53.1!

48$
50$
52$
54$
56$
58$
60$
62$
64$

Judge 1 Judge 2 Judge 3

Accuracy 

Performed at chance
(p-value = 0.5)

Performed at chance
(p-value = 0.1)

$ Aligns with previous studies in deception literature: 
humans typically perform barely better than chance. 
trained experts may perform at ~70%



How Well Can Computers Do? 



Classifier Performance

61.9

73

89.8

55$

60$

65$

70$

75$

80$

85$

90$

95$

Best Human 
Variant

Classifier:      
Part-of-Speech

Classifier:     
Words

Accuracy!

$ By analyzing *only* the 
distribution of part-of-
speech (e.g., nouns, 
verbs, adjectives), already 
performs much better 
than human judges!

(SVM with 5-fold CV) 



Classifier Performance

61.9

73

89.8

55$

60$

65$

70$

75$

80$

85$

90$

95$

Best Human 
Variant

Classifier:      
Part-of-Speech

Classifier:     
Words

Accuracy!

$ No human 
performs at this 
level in deception 
literature!

(SVM with 5-fold CV) 



Data-driven Discovery of Insights  
into  

Deceptive Writings



Informative writing (left) --- nouns, adjectives, prepositions 
Imaginative writing (right) --- verbs, adverbs, pronouns 
Rayson et. al. (2001) 




Truthful Reviews 

≈
Informative Writing 

(Journalism)

Deceptive Reviews

≈
Imaginative Writing 

(Novels)





%  lack of spatial, sensorial details (Vrij et al., 2009) 
%  lack of descriptive adjectives: low, small, shiny 
%  less use of prepositions 



instead, story telling: 

-- why they were there: “vacation”, “business”, “anniversary” 
-- whom they were with: “husband”, “family”



%  exaggeration, words over the top: 
“fantastic”, “luxurious”, “gorgeous”, “awesome”

%  superlatives: “the most”, “best”, “ever”
%  certainty: “absolutely”, “definitely”, “for sure”



Increased level of “first person singular”
“I”, “me”, “my”, “mine” 

In contrast to psychological distancing (Newman et al., 2003) 
$ deception cues are domain dependent



What happened after then ( = 2011) ?



�  Syntax Improves Deception Detection 
       (Feng et al., ACL 2012) 

--- 3 product review dataset 
---1 essay dataset (Mihalcea and Strapparava (2009))

�  Natural V.S. Distorted Distributions of Opinions 
       (Feng et al., ICWSM 2012, best paper runner up)



Traveler rating

5-star                                     113 

4-star                                     135

3-star                                     44

2-star                                     13

1-star                                            5



                                310 Reviews                                 296 Reviews

Traveler rating 
5-star                                    167

4-star                                     60

3-star                                     25

2-star                                     19

1-star                                          25
1


1. We built better detection models



2. We excited other researchers 

185 citations 



(Highlights 2011-2014) 

#  [ACL 2011]  Finding Deceptive Opinion Spam by Any Stretch of the Imagination.

#  [ICWSM 2012]  Distributional Footprints of Deceptive Product Reviews. 

#  [EMNLP 2013]  Where Not to Eat? Improving Public Policy by Predicting Hygiene... 

3. Been featured by media outlets 



4. We hope NLP for Social Good 
•  When our work was first published in 2011, no clear legal regulations 

against fake reviews. 
•  Not any more! New York law enforcement charged 19 firms $350,000 

for facilitating fake reviews (Sep 2013). 
–  (not based on automatic detection)



Conclusion (Part I – Deception) 

•  Learning to read the “intent” of the author, even a hidden 
one.

•  Humans not good at this task.
•  Computers can at times perform better than humans, even 

without full blown semantic understanding. 
•  Data-driven discovery of insights to complement 

hypothesis-driven research 

Ott et al. ACL 2011; 
Feng et al. ICWSM 2012; 
Feng et al. ACL 2012

Ganganath, Jurafsky, McFarland (EMNLP 2009)
$ computers predict flirtation intention better than 
humans can, despite humans having access to vastly richer 
information (visual features, gesture, etc.). 



From Language to the Mind 

Unconventional Case Studies:
I.  Deceptive Reviews (ACL 2011)
II.  Success of Novels (EMNLP 2013)


“HOW” it is said
i.e., Writing Style



Predicting the success of novels 



Describing the Visual World  
in Natural Language	




Task:  
Learning to Describe Images in Natural Language

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 

semantic correspondence 

How people write

Web Imagery

Two approaches:
I.                   Formulaic image description 

&     CVPR 2011 
II.                   Expressive image description 

&  TACL 2014 (in submission), ACL 2013, ACL 2012

BabyTalk(

TreeTalk(



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



“This picture shows one person, one grass, one chair, and one potted 
plant. The person is near the green grass, and in the chair. The green 
grass is by the chair, and near the potted plant.”



Methodology Overview

Input Image

Extract Objects/stuff

a) dog

b) person

c) sofa

brown 0.32
striped 0.09
furry .04
wooden .2
Feathered .
04
        ...

brown 0.94
striped 0.10
furry .06
wooden .8
Feathered .
08
        ...

brown 0.01
striped 0.16
furry .26
wooden .2
feathered .06
        ...a) dog

b) person

c) sofa
Predict attributesPredict prepositions

a) dog

b) person

c) sofa

near(a,b) 1    
near(b,a) 1 
against(a,b) .11
against(b,a) .04 
beside(a,b) .24
beside(b,a) .17
        ...

near(a,c)  1  
near(c,a)  1   
against(a,c) .3
against(c,a) .05 
beside(a,c) .5
beside(c,a) .45
      ...

near(b,c)  1   
near(c,b)  1   
against(b,c) .67
against(c,b) .33 
beside(b,c) .0
beside(c,b) .19
      ...Predict labeling – vision potentials 
smoothed with text potentials

!"#$%

!"#&%

'()*$%

+,($%

!"#-%

+,(&%

+,(-%

'()*&%

'()*-%

<<null,person_b>,against,<brown,sofa_c>> 
<<null,dog_a>,near,<null,person_b>> 
<<null,dog_a>,beside,<brown,sofa_c>> Generate natural 

language description

This is a photograph of one 
person and one brown sofa and 
one dog. The person is against 
the brown sofa. And the dog is 
near the person, and beside the 
brown sofa. 



Conditional Random Fields (CRF)

Obj1$

Obj2$

Obj3$

A@r1$

A@r2$

A@r3$

Prep1$

Prep2$

Prep3$



Potential Functions for CRF 

ψ (object _ i)
ψ (attribute_i)
ψ (preposition _ ij)

ψ (attribute_ i ,object _ i)
ψ (object _ i,preposition _ ij,object _ j)

unary 
potentials

relational
( binary & 
ternary) 
potentials



Potential Functions for CRF

ψ (object _ i)
ψ (attribute_i)
ψ (preposition _ ij)

ψ (attribute_ i ,object _ i)
ψ (object _ i,preposition _ ij,object _ j)

unary 
potentials

relational
( binary & 
ternary) 
potentials

Practical challenge of relational potentials: 
$ 

observing all possible combinations of variables unlikely 
(limited corpus with detailed visual annotations) 

visual 
potentials

textual 
potentials



 
Computer vs Human Generated Caption 

                  “This picture shows one 
person, one grass, one chair, and one 
potted plant. The person is near the 
green grass, and in the chair. The green 
grass is by the chair, and near the potted 
plant.”

Computer:

Human (UIUC Pascal dataset):

A.  A Lemonaide stand is manned by a 
blonde child with a cookie. 

B.  A small child at a lemonade and 
cookie stand on a city corner.  

C.  Young child behind lemonade stand 
eating a cookie. 



                  “This picture shows one 
person, one grass, one chair, and one 
potted plant. The person is near the 
green grass, and in the chair. The green 
grass is by the chair, and near the potted 
plant.”

A.  A Lemonaide stand is manned by a 
blonde child with a cookie. 

B.  A small child at a lemonade and 
cookie stand on a city corner.  

C.  Young child behind lemonade stand 
eating a cookie. 

Computer:

Human (UIUC Pascal dataset):

(1) formulaic, robotic and unnatural
(2) limited semantic expressiveness, especially, no verb except “be” verb 

How can we reduce the 
gap between these two? 



Web  
in 1995 



Web Today: Increasingly Visual   
-- social media, news media, online shopping 

•  Facebook.com$has$over$250$billion$images$uploaded$as$of$Jun$2013$
•  1.15$billion$users$uploading$350$million$images$a$day$on$average$



Task:  
Learning to Describe Images in Natural Language

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 
“A butterfly having lunch” 

“A butterfly having lunch” 

semantic correspondence 

Two approaches:
I.                   Formulaic image description 

&     CVPR 2011 
II.                   Expressive image description 

&  TACL 2014 (in submission), ACL 2013, ACL 2012

How people write

Web Imagery

BabyTalk(

TreeTalk(



Given a query image (& an object)

�  Harvest tree branches 

�  Compose a new tree by combining tree branches

SBU Captioned Photo Dataset

1,000,000 (image, caption)

Operational Overview

(Ordonez et al. 2011)



Description Generation 

the dirty sheep meandered along a 
desolate road in the highlands of 
Scotland through frozen grass 

NP: the dirty sheep 

VP: meandered along a 
desolate road 

PP: in the highlands of Scotland

PP: through frozen grass

Object appearance

Object pose 

Scene appearance

Region 
appearance & 
relationship

Example Composition:



Target Image

A cow was staring at me

in the grass  in the countryside

Object (NP) Action (VP)

Stuff (PP)  Scene (PP)

Input to Sentence Composition := 



Target Image

A cow was staring at me

in the grass  in the countryside

Object (NP) Action (VP)

Stuff (PP)  Scene (PP)

1.  Select a subset of harvested phrases
2.  Decide the ordering of the selected phrases 

Sentence Composition := 

A cow 
in the grass 
was staring at me 
in the countryside 

A cow 
was staring at me 
in the grass 
in the countryside 



Target Image Object (NP) Action (VP)

Stuff (PP) Scene (PP)

1.  Select a subset of harvested phrases
2.  Decide the ordering of the selected phrases 

Sentence Composition := 

A cow 
in the grass 
was staring at me 
in the countryside 

A cow 
was staring at me 
in the grass 
in the countryside 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

Tree Structure --- Probabilistic Context Free Grammars (PCFG)



In the grass --- was staring at me --- a cow

Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

VP 

SINV 



In the grass --- was staring at me --- a cow

Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

VP 

SINV 

A cow --- was staring at me --- in the countryside

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

S 

VP 

: global sentence 
structure

: global sentence 
structure

: local cohesion

: local cohesion



In the grass --- was staring at me --- a cow

Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

VP 

SINV 
: global sentence 
structure

Action (VP) Stuff (PP) Scene (PP)

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

: local cohesion

Object (NP)

$ different from parsing because we must consider different 
choices of subtree selection and re-ordering simultaneously 



In the grass --- was staring at me --- a cow

Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

VP 

SINV 
: global sentence 
structure

Action (VP) Stuff (PP) Scene (PP)

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

: local cohesion

Object (NP)

$ different from parsing because we must consider different 
choices of subtree selection and re-ordering simultaneously 

$ finding the optimum selection+ordering = NP-hard (~= TSP) 

as Constraint Optimization 
using Integer Linear Programming 
 
--- Roth and Yih (2004), Clarke and Lapata (2006), 
Martins and Smith (2009), Woodsend and Lapata(2010)


(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

decision variable:

Content selection score
based on visual 

recognition and matching 

objective function: 

k=0 k=1 k=2 k=3 

i’th phrase from 
Stuff(PP)-type 



Sentence Composition := 

a 

DT 

cow 

NN 

NP 

at 

IN NP 
PP 

staring 
VBG 

VP 

me 
PRP 

was 
VBD 

VP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

Action (VP) Stuff (PP) Scene (PP)

a 

DT 

cow 

NN 

NP 

at 

IN NP 

PP 

staring 

VBG 

VP 

me 

PRP 

was 

VBD 

VP 

the 

DT 

countryside 

NN 

NP 

in 

IN 

PP 

the 

DT 

grass 

NN 

NP 

in 

IN 

PP 

: local cohesion

Object (NP)

as Constraint Optimization 
using Integer Linear Programming 

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.

(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
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ditionally, we define variables for each pair of adja-
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tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
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then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
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tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.
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select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
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�ijs = 1 iff cell ij of the matrix is assigned (3)
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Where i 2 [0, N) and j 2 [i, N) index rows and
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(2012), attempts to make the best use of linguis-
tic regularities with respect to objects, actions, and
scenes, making it possible to obtain richer visual
descriptions beyond what current state-of-the-art vi-
sion techniques can provide alone.

More concretely, as illustrated in Figure 1, we ex-
tract four types of phrases (as tree fragments): first,
from those images with matching object detections,
we extract their corresponding noun phrases.1 Sec-
ond, again from those images with matching object,
we also extract verb phrases (if any) for which the
corresponding noun phrase takes the subject role.2

Third, from those images with matching “stuff” de-
tections,3 we extract their corresponding preposi-
tional phrases, if the spatial relationship (i.e., loca-
tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
to pruned tree fragments. We use the captioned im-
age corpus of Ordonez et al. (2011) for phrase ex-
traction and caption compression.

3 Tree Composition
In this section we describe a constraint optimization
approach to tree composition using extracted tree
fragments as described in §2. The input to the algo-
rithm is a set of extracted phrases (as tree fragments)
for each phrase type. The goal of the algorithm is to

1We use color, texton (Leung and Malik, 1999), HoG (Dalal
and Triggs, 2005) and SIFT (Lowe, 2004) features.

2Vision detections for verbs (actions or descriptive states)
remain to be a very challenging problem. We bypass this limita-
tion by exploiting the semantic relations between noun phrases
and verb phrases. We leave more precise alignment between
image parts and text as a future research direction.

3Stuff refers to objects without rigid boundaries, e.g., “wa-
ter”, “sky” (typically mass nouns). We use the same features
as above.

4L2 distance between classification score vectors (Xiao et
al., 2010)

select a subset of these phrases (at most one phrase
from each phrase type) and reorder them while con-
sidering both the parse structure and n-gram cohe-
sion across different phrasal boundaries.

Figure 2 shows a simplified example of a com-
posed sentence with its parse structure. For brevity,
the figure shows only one phrase for each phrase
type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.

Although we visualize the operation using CKY-
style representation in Figure 3, note that composi-
tion requires more complex combinatorial decisions
than CKY parsing due to two additional consider-
ations: (1) selecting a subset of candidate phrases,
and (2) re-ordering the selected phrases (hence NP-
hard). Therefore, we encode our problem using
Integer Linear Programming (ILP) (e.g., Roth and
tau Yih (2004), Clarke and Lapata (2008)) and use
Cplex (ILOG, Inc, 2006) solver.

3.1 ILP Variables
Let R be the set of PCFG rules and S be the set of
PCFG tags (i.e., nonterminal symbols).
Variables for Sequence Structure: We define vari-
ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
ditionally, we define variables for each pair of adja-
cent phrases to capture sequence cohesion:

↵ijkpq(k+1) = 1 iff ↵ijk = ↵pq(k+1) = 1 (2)

Variables for Tree Structure: We define variables
� to encode the parse structure:

�ijs = 1 iff cell ij of the matrix is assigned (3)
with PCFG tag s

Where i 2 [0, N) and j 2 [i, N) index rows and
columns of the CKY-style matrix in Figure 3. We

5The number of positions is equal to the number of phrase
types, since we select at most one from each type.
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tion and distance) between objects and stuff match
as well. Finally, based on the global “scene” sim-
ilarity,4 we extract the corresponding prepositional
phrases, e.g., “at the conference”, “in the market”.

We extract the above set of phrases for each object
detected in a query image and generate one sentence
for each of those detected objects. All sentences are
then combined together into the final description.
Optionally, we apply image caption generalization
(via compression) (§4) to all captions in the corpus
prior to the phrase extraction and composition. In
this optional case, the extracted phrases correspond
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type, but there are many more candidate phrases to
choose from for each phrase type. Figure 3 shows
the CKY-style representation of the internal me-
chanics of constraint optimization for the example
composition shown in Figure 2.
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and (2) re-ordering the selected phrases (hence NP-
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to pruned tree fragments. We use the captioned im-
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style representation in Figure 3, note that composi-
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than CKY parsing due to two additional consider-
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PCFG tags (i.e., nonterminal symbols).
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ables ↵ to encode phrase selection and ordering:

↵ijk = 1 iff phrase i of type j selected (1)
for position k 2 [0, N)

Where k is one of N=4 positions in a sentence.5 Ad-
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Valid PCFG parse tree 



Automatic Evaluation

0.14$

0.15$

0.16$

0.17$

0.18$

0.19$

0.2$

0.21$

0.22$

Sequence$ Seq$+$Tree$ Seq$+$Pruning$ Seq$+$Tree$+$
Pruning$

Bleu@1!
BLEU – N-gram precision (with 
modifications to handle degenerate cases)

Machine Translation: 
From Images to Text

Machine Caption   VS   Human Caption 
(forced choice w/ Amazon Mechanical Turk)  

'   Final system (seq + tree + pruning):      24% win 

~$ACL$2012$system$
TACL$2014$system$



The duck sitting in the water. The flower was so vivid 
and attractive. 

This window depicts the church. 

Blue flowers are running 
rampant in my garden. 

Good Examples

correct$choice$of$
an$acWon$verb$

Highly$
expressive!$InteresWng$

choice$of$
an$abstract$
verb!$



Scenes around the lake on my bike ride.

Mini Turing Test: our system wins in ~ 24 % cases! 

Blue flowers have no scent. Small white 
flowers have no idea what they are. 

Almost$poeWc,$situaWonally$relevant$

Spring in a white dress. 

This horse walking along the road as 
we drove by. 

Maybe the most common bird in the 
neighborhood, not just the most common 
water fowl in the neighborhood! 

The duck was having a feast. 



The couch is definitely bigger 
than it looks in this photo. 

My cat laying in my duffel bag. 
A high chair in 
the trees. 

Yellow ball suspended in water. 

Examples with Mistakes

Incorrect$Object$
RecogniWon$

Incorrect$Scene$
Matching$ Incorrect$

ComposiWon$



A cat looking for a home. 
The other cats are making 
the computer room. 

Examples with Mistakes

The castle known for being 
the home of Hamlet in the 
Shakespeare play. 

???!
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Natural Language Processing 
Artificial Intelligence 

Machine Learning 
Computer Vision 

 
( algorithms  
+ statistics  

+ probabilities  
+ programming  

+ ... )	




Question? 



From Language to the Mind 

Unconventional Case Studies:
I.  Deceptive Reviews (ACL 2011)
II.  Success of Novels (EMNLP 2013)


“HOW” it is said
i.e., Writing Style



Predicting the success of novels 



Publishers do make mistakes 

Paul Harding’s “Tinkers” 
that won 2010 Pulitzer 
Prize for Fiction was 
rejected couple times 
before publication.

Rejected ~12 times 
before publication.



Can Computers Predict  
the Success of Novels  

without Really Reading the Book?

•  based only on writing style
•  stylistic correlates of successful novels?



How to  
define success



How to  
quantify success



Popularity v.s. Literary Quality 

Downloaded$Downloads!
2013?10?10! 143540!

last!7!days! 1099579!

last!30!days! 4443895!



•  Project Gutenberg 
–  free ebooks.
–  Title, author, genre, download count.

•  50 books per class, 8 genres. 
Adventure

Fiction 

Historical 

Love 

Mystery

Poetry

Sci-fi

Short Story

Dataset

More$$
successful$

Less$
successful$



•  Project Gutenberg 
–  offers over 40,000 free ebooks.
–  Title, author, genre, download count.

•  50 books per class, 8 genres. 
•  <=2 books per author.

Authorship!aDribuFon!

Adventure

Fiction 

Historical 

Love 

Mystery

Poetry

Sci-fi

Short Story

Dataset



Prediction: 
  (based on best performing features, 5-fold CV with SVM)

84!

75$ 75$

61$

82$

76$ 77$ 78$

Accuracy (%)

Average accuracy: 77.2% 



This is Surprising Because… 

•  Not considering any other influencing factor, not actually 
understanding the story, only looking at writing styles

•  Different writers have wildly different writing styles. Should 
there even be stylistic commonalities shared by those 
different individuals? 

•  Testing : only the books by previously unseen authors (who 
presumably have his/her own unique writing style) 



Secret Elements  
in Successful Novels 

 
(only as correlates, not to be confused as causality)



NP! PP! VP! CONJP! QP! UCP! WHADJP!

ADJP! ADVP! FRAG! INTJ! WHNP! WHPP!

Adventure!

Mystery!

FicFon!

History!

Love!

Poetry!

Sci?Fi!

Story!

Distribution of Tree (PCFG) Components



NP! PP! VP! CONJP! QP! UCP! WHADJP!

ADJP! ADVP! FRAG! INTJ! WHNP! WHPP!

Adventure!

Mystery!

FicFon!

History!

Love!

Poetry!

Sci?Fi!

Story!

Distribution of Phrasal TagsWriting Style of Journalism
(Douglas and Broussard 2000, Rayson et al. 2001)



NP! PP! VP! CONJP! QP! UCP! WHADJP!

ADJP! ADVP! FRAG! INTJ! WHNP! WHPP!

Adventure!

Mystery!

FicFon!

History!

Love!

Poetry!

Sci?Fi!

Story!

Distribution of Tree (PCFG) Components



Easier to Read

Harder to Read 

More Successful

Less Successful 

?

Readability & Literary Success



Easier to Read

Harder to Read 

More Successful

Less Successful 

?

Readability & Literary Success
Success in Academic 

Journals (best paper awards)

Sawyer et al (2008) @ Journal of Marketing



Easier to Read

Harder to Read 

More Successful

Less Successful 

?

Readability & Literary Success



Readability & Literary Success

More Successful

Less Successful 

Easier to Read

Harder to Read 

1.  Increased use of VP= better readability (Pitler and Nenkova (2008) 
2.  Readability 

Indices:
METRIC  More!Successful Less!Successful

FOG$index 9.88 9.80

Flesch$index  87.48 87.64



Less successful:
•  verbs that are explicitly descriptive of actions and emotions: 

want, went, took, promise, cry, shout, jump, glare, urge 
•  extreme words: never, very, breathless, absolutely, perfectly 
•  cliche: love (desires, affair), body parts (face, arms, skin), 

obvious locations (beach, room, boat, avenue)


More successful:
•  verbs that describe thought-processing: 
    recognized, remembered 
•  verbs for reports or quotes: said
•  prepositions: up, into, out, after, in, within 
•  discourse connectives: and, which, though, that, as, after 

Insights into Lexical Choices (w.r.t. Adventure Genre)

telling

showing except for “think”, 
which is a more direct 

and general word$



From Language to the Mind 

Unconventional Case Studies:
I.  Deceptive Reviews 

   (ACL 2011)

II.  Success of Novels
  (EMNLP 2013)

intellectual traits
(~ cognitive identity)
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Research Outlook 

“HOW” it is said
i.e., Writing Style

1.  Many more surprising and impactful applications 
--- yet to be discovered, formulated, and explored! 

2.  Computers may at times perform better than humans. 
3.  NLP for Digital Humanities (... and for Humanities) 

--- Data-driven discovery of insights vs. hypothesis-driven 


