Imperfection is Beautiful and Efficient

Luis Ceze

University of Washington

I do "computer architecture"

oh, you make computers more beautiful?

Sort of, I like making them more beautiful and efficient!

So, what's computer architecture research?

Finding new ways of building computers that are more efficient, faster, can meet new constraints etc...

core problems:

performance reliability energy

big small tiny nano

transistors
3d chips
photonics
storage cells

(fast, non-volatile!)

Facebook Stores 240 Billion Photos And Adds 350 Million More A Day

Netflix Now Accounts for 34 Percent of US Internet Traffic at Peak Times

YouTube: 100 hours of video uploaded per minute. 4 billion video views a day.

image, sound and video processing

These applications consume a lot (most?) of our cycles/bytes/bandwidth!

Often input data is inexact by nature (from sensors)

They have multiple acceptable outputs

simulations, games, search, machine learning

0110101 1111010

5

Yet, we design computer systems like this...

Lower layers work hard to expose a general, reliable, precise and (mostly) deterministic interface.

Application

Language

Compiler

ISA/Architecutre

Circuits

Physics

At a **big** efficiency cost!

250W

What is "approximate computing"?

Building acceptable systems out of unreliable/inaccurate hardware and software components

Efficiency and performance Output accuracy

Language
Compiler
ISA/Architecutre
Circuits
Physics

In essence, it is about *specializing computation, storage and communication* to properties of the data and the algorithm. Enables better use of underlying substrate.

But approximation needs to be done carefully... or...

Three important questions

What and how to approximate?

Language

How good is my output?

Compiler

Runtime

How to take advantage of it?

Hardware

Example: Neural Networks as General Approximate Accelerators

Neural acceleration

Compile the program and train a neural network

Neural acceleration

Find an approximate program component

Compile the program and train a neural network

Execute on a fast Neural Processing Unit (NPU)

3-20x performance/efficiency improvement (FPGA SoC prototype).

Approximation beyond the CPU

Multi-level solid state cells

DRAM

Wireless networking

And end-to-end story

Approximate near-sensor processing

Approximate communication

Deep neural nets

Approximate storage

Beyond CMOS, beyond digital, beyond efficiency

Science of approximate computing

Embedded controllers for biochemical systems: "smart" therapeutics and diagnostics

SIMBIOTECH: Silicon Meets Biotech

Take home: confluence of trends points to pervasive approximate computing systems

Thanks!

Luis Ceze

University of Washington

PL Architecture

Connoller

University of Washington

For a review see D. Y. Zhang and G. Seelig, Nature Chemistry (2011)

For a review see D. Y. Zhang and G. Seelig, Nature Chemistry (2011)

Strand displacement is initiated at the single-stranded toeholds. Toehold binding is a reversible process.

Strand displacement proceeds through a branch migration. Branch migration is a random walk.

Release of the output strand is (almost) irreversible in the absence of a toehold for the reverse reaction.

Signals can propagate through multiple layers

Sequence determines interactions: The chemical specificity determines the "wiring diagram." There are $4^{20}=10^{12}$ different 20-mers but most sequences can't be used.

Take away message

We can build simple logic gates and circuits using DNA.

DNA strand displacement circuits are the largest engineered molecular circuits built so far. But they are still really small.

