Groupby and Indexing¶
In this lesson, we'll learn about an important DataFrame
operation called groupby
. Along the way, we'll also discuss how this groupby operation introduces an extra level of complexity toward indexing and slicing values. By the end of this lesson, students will be able to:
- Apply the groupby operation to a list of dictionaries and to a
pandas
DataFrame
. - Select values from a hierarchical index using tuples and the
slice
object as keys. - Apply the apply operation to a list of dictionaries and to a
pandas
DataFrame
.
Previously, we learned how to find the largest earthquake in a dataset using both a list of dictionaries and using a pandas
DataFrame
. How about finding the largest earthquake for each place in the dataset?
import doctest
import io
import pandas as pd
To help visualize our work, the following dataset contains the first 12 rows from earthquakes.csv
.
csv = """
id,year,month,day,latitude,longitude,name,magnitude
nc72666881,2016,7,27,37.6723333,-121.619,California,1.43
us20006i0y,2016,7,27,21.5146,94.5721,Burma,4.9
nc72666891,2016,7,27,37.5765,-118.85916670000002,California,0.06
nc72666896,2016,7,27,37.5958333,-118.99483329999998,California,0.4
nn00553447,2016,7,27,39.3775,-119.845,Nevada,0.3
ak13805337,2016,7,27,61.2963,-152.46,Alaska,1.8
hv61354276,2016,7,27,19.4235,-155.60983330000005,Hawaii,1.0
ak13805339,2016,7,27,61.3019,-152.4507,Alaska,2.0
ci37640584,2016,7,27,35.503,-118.40583329999998,California,1.2
nc72666901,2016,7,27,37.673,-121.6133333,California,1.67
ci37640592,2016,7,27,33.5888333,-116.8165,California,0.48
nn00553416,2016,7,27,38.2638,-118.7351,Nevada,0.9
"""
earthquakes = pd.read_csv(io.StringIO(csv), index_col="id")
earthquakes
year | month | day | latitude | longitude | name | magnitude | |
---|---|---|---|---|---|---|---|
id | |||||||
nc72666881 | 2016 | 7 | 27 | 37.672333 | -121.619000 | California | 1.43 |
us20006i0y | 2016 | 7 | 27 | 21.514600 | 94.572100 | Burma | 4.90 |
nc72666891 | 2016 | 7 | 27 | 37.576500 | -118.859167 | California | 0.06 |
nc72666896 | 2016 | 7 | 27 | 37.595833 | -118.994833 | California | 0.40 |
nn00553447 | 2016 | 7 | 27 | 39.377500 | -119.845000 | Nevada | 0.30 |
ak13805337 | 2016 | 7 | 27 | 61.296300 | -152.460000 | Alaska | 1.80 |
hv61354276 | 2016 | 7 | 27 | 19.423500 | -155.609833 | Hawaii | 1.00 |
ak13805339 | 2016 | 7 | 27 | 61.301900 | -152.450700 | Alaska | 2.00 |
ci37640584 | 2016 | 7 | 27 | 35.503000 | -118.405833 | California | 1.20 |
nc72666901 | 2016 | 7 | 27 | 37.673000 | -121.613333 | California | 1.67 |
ci37640592 | 2016 | 7 | 27 | 33.588833 | -116.816500 | California | 0.48 |
nn00553416 | 2016 | 7 | 27 | 38.263800 | -118.735100 | Nevada | 0.90 |
Groupby in plain Python¶
Let's first see how we can solve this problem using the list of dictionaries approach.
result = {}
for earthquake in earthquakes.to_dict("records"): # Convert to list of dictionaries
if earthquake["name"] not in result or earthquake["magnitude"] > result[earthquake["name"]]:
result[earthquake["name"]] = earthquake["magnitude"]
# What is the largest magnitude earthquake in *each* unique place name?
# For *each* place name, what is the largest magnitude earhtquake?
result
{'California': 1.67, 'Burma': 4.9, 'Nevada': 0.9, 'Alaska': 2.0, 'Hawaii': 1.0}
Groupby in Pandas¶
The inventors of pandas
defined a DataFrame
function called groupby
to streamline this operation into a single expression.
earthquakes.groupby("name")["magnitude"].max()
name Alaska 2.00 Burma 4.90 California 1.67 Hawaii 1.00 Nevada 0.90 Name: magnitude, dtype: float64
earthquakes.groupby("name") # GroupBy object, which is ready for calling .max() or something else
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7cfde540faf0>
What's going on here? We can take a closer view at each step of the process in PandasTutor. In summary, this expression:
- Calls
earthquakes.groupby("name")
to split theearthquakes
into groups by"name"
. - For each group, selects the column
"magnitude"
indicated in square brackets. - Combines (summarizes) each group on the selected column using the
max()
function.
groupby
help us quickly answer questions involving "grouping by" one or more columns and then summarizing data in another column.
The best part about pandas
groupby
is that it allows us to quickly answer many different kinds of questions following the same format. For example, suppose we want to compute descriptive statistics for all the earthquake magnitudes that occurred on each day. Let's read the full dataset and try it out.
earthquakes = pd.read_csv("earthquakes.csv", index_col="id")
earthquakes
year | month | day | latitude | longitude | name | magnitude | |
---|---|---|---|---|---|---|---|
id | |||||||
nc72666881 | 2016 | 7 | 27 | 37.672333 | -121.619000 | California | 1.43 |
us20006i0y | 2016 | 7 | 27 | 21.514600 | 94.572100 | Burma | 4.90 |
nc72666891 | 2016 | 7 | 27 | 37.576500 | -118.859167 | California | 0.06 |
nc72666896 | 2016 | 7 | 27 | 37.595833 | -118.994833 | California | 0.40 |
nn00553447 | 2016 | 7 | 27 | 39.377500 | -119.845000 | Nevada | 0.30 |
... | ... | ... | ... | ... | ... | ... | ... |
nc72685246 | 2016 | 8 | 25 | 36.515499 | -121.099831 | California | 2.42 |
ak13879193 | 2016 | 8 | 25 | 61.498400 | -149.862700 | Alaska | 1.40 |
nc72685251 | 2016 | 8 | 25 | 38.805000 | -122.821503 | California | 1.06 |
ci37672328 | 2016 | 8 | 25 | 34.308000 | -118.635333 | California | 1.55 |
ci37672360 | 2016 | 8 | 25 | 34.119167 | -116.933667 | California | 0.89 |
8394 rows × 7 columns
# What are the descriptive statistics for the earthquakes that occurred on each unique day?
magnitudes_per_day = earthquakes.groupby(["year", "month", "day"])["magnitude"].describe()
magnitudes_per_day
count | mean | std | min | 25% | 50% | 75% | max | |||
---|---|---|---|---|---|---|---|---|---|---|
year | month | day | ||||||||
2016 | 7 | 27 | 272.0 | 1.617574 | 1.095349 | 0.06 | 0.9000 | 1.400 | 2.0000 | 5.60 |
28 | 308.0 | 1.448149 | 0.896851 | 0.10 | 0.8775 | 1.240 | 1.8000 | 5.10 | ||
29 | 309.0 | 1.640129 | 1.165952 | 0.01 | 0.8800 | 1.450 | 1.9000 | 7.70 | ||
30 | 329.0 | 1.615076 | 1.262618 | 0.03 | 0.7000 | 1.240 | 2.0000 | 5.70 | ||
31 | 278.0 | 1.750827 | 1.261577 | 0.10 | 0.9000 | 1.500 | 2.1475 | 5.90 | ||
8 | 1 | 356.0 | 1.520056 | 1.157326 | 0.04 | 0.8000 | 1.245 | 1.8025 | 6.10 | |
2 | 292.0 | 1.539418 | 1.089946 | 0.05 | 0.8000 | 1.300 | 1.9000 | 5.50 | ||
3 | 294.0 | 1.556327 | 1.147365 | 0.01 | 0.8300 | 1.200 | 1.8150 | 5.10 | ||
4 | 420.0 | 1.249190 | 1.034738 | 0.05 | 0.6000 | 1.000 | 1.5825 | 6.30 | ||
5 | 256.0 | 1.428789 | 1.144244 | 0.10 | 0.6200 | 1.185 | 1.7150 | 5.70 | ||
6 | 316.0 | 1.313228 | 1.065587 | 0.09 | 0.5600 | 1.100 | 1.6200 | 5.40 | ||
7 | 316.0 | 1.356994 | 1.078556 | 0.10 | 0.6000 | 1.120 | 1.7425 | 5.10 | ||
8 | 335.0 | 1.484925 | 1.131495 | 0.02 | 0.6300 | 1.200 | 1.9900 | 5.10 | ||
9 | 272.0 | 1.614779 | 1.164186 | 0.10 | 0.8075 | 1.300 | 1.9000 | 5.09 | ||
10 | 329.0 | 1.404742 | 1.038701 | 0.02 | 0.7700 | 1.170 | 1.7400 | 5.40 | ||
11 | 356.0 | 1.390534 | 1.159147 | 0.04 | 0.6775 | 1.100 | 1.7000 | 7.20 | ||
12 | 326.0 | 1.533282 | 1.158696 | 0.04 | 0.7400 | 1.200 | 1.9000 | 5.40 | ||
13 | 284.0 | 1.421901 | 1.080338 | 0.10 | 0.7000 | 1.105 | 1.7775 | 5.20 | ||
14 | 231.0 | 1.692684 | 1.372191 | 0.05 | 0.8200 | 1.200 | 1.9000 | 5.90 | ||
15 | 222.0 | 1.583964 | 1.157553 | 0.07 | 0.8550 | 1.300 | 1.8400 | 5.40 | ||
16 | 223.0 | 1.629910 | 1.223131 | 0.10 | 0.7300 | 1.300 | 2.0000 | 5.10 | ||
17 | 220.0 | 1.583682 | 1.203617 | 0.10 | 0.8000 | 1.210 | 1.9675 | 5.20 | ||
18 | 219.0 | 1.499772 | 1.159497 | 0.04 | 0.7600 | 1.200 | 1.8050 | 5.90 | ||
19 | 226.0 | 1.819469 | 1.416291 | 0.11 | 0.8925 | 1.340 | 2.1900 | 7.40 | ||
20 | 237.0 | 1.553207 | 1.296262 | 0.02 | 0.7000 | 1.200 | 2.0000 | 6.40 | ||
21 | 266.0 | 1.332368 | 1.032210 | 0.03 | 0.6050 | 1.140 | 1.6925 | 5.10 | ||
22 | 215.0 | 1.451488 | 1.185657 | 0.01 | 0.7000 | 1.180 | 1.8000 | 5.60 | ||
23 | 233.0 | 1.643391 | 1.245661 | 0.04 | 0.8200 | 1.300 | 2.1000 | 6.20 | ||
24 | 216.0 | 1.553194 | 1.144054 | 0.03 | 0.8375 | 1.290 | 1.9000 | 6.80 | ||
25 | 238.0 | 1.519328 | 0.926028 | 0.10 | 0.8900 | 1.400 | 1.9950 | 5.90 |
Explain in your own words the result of the following code snippet.
# For each unique earthquake place name, what is the max latitude for the earthquakes that occurred there?
earthquakes.groupby("name")["latitude"].max()
name Afghanistan 36.634500 Alaska 70.778700 Anguilla 18.435800 Argentina -22.394200 Arizona 36.811667 ... Washington 48.965667 West Virginia 37.863000 Western Indian-Antarctic Ridge -49.281000 Western Xizang 34.444600 Wyoming 44.749000 Name: latitude, Length: 118, dtype: float64
Why do some expressions return a Series
(1-d column) while other expressions return a DataFrame
(2-d table)? This depends on how many columns your output needs. From the last lesson, we learned that Pandas tries to predict how many rows and columns of output will be required.
- If only one row and one column is required, then the output will just be a single value.
- If [we might have] more than one row but only one column, or [we might have] more than one column but only one row is required, then the output will be a
Series
. - If [we might have] more than one row and [we might have] more than one column, then we'll need a
DataFrame
.
Hierarchical indexing¶
If you look closely at the magnitudes_per_day
DataFrame
, you'll notice something interesting: there are three index columns in bold on the left to denote each year
, month
, and day
group. In pandas
, a DataFrame
can have a hierarchical (aka multi-level) index called a MultiIndex
.
magnitudes_per_day.index
MultiIndex([(2016, 7, 27), (2016, 7, 28), (2016, 7, 29), (2016, 7, 30), (2016, 7, 31), (2016, 8, 1), (2016, 8, 2), (2016, 8, 3), (2016, 8, 4), (2016, 8, 5), (2016, 8, 6), (2016, 8, 7), (2016, 8, 8), (2016, 8, 9), (2016, 8, 10), (2016, 8, 11), (2016, 8, 12), (2016, 8, 13), (2016, 8, 14), (2016, 8, 15), (2016, 8, 16), (2016, 8, 17), (2016, 8, 18), (2016, 8, 19), (2016, 8, 20), (2016, 8, 21), (2016, 8, 22), (2016, 8, 23), (2016, 8, 24), (2016, 8, 25)], names=['year', 'month', 'day'])
A MultiIndex
is .loc
-accessible with Python tuples. However, the syntax is somewhat unusual, particularly when combined with slicing due to limitations in the Python programming language. For each example below, predict the output type (single value, 1-d Series
, or 2-d DataFrame
) as well as the contents of the output before running it.
# How many earthquakes occurred on 2016-07-27?
magnitudes_per_day.loc[(2016, 7, 27), "count"]
272.0
# How many earthquakes occurred on all the days (in the dataset)?
magnitudes_per_day.loc[:, "count"]
year month day 2016 7 27 272.0 28 308.0 29 309.0 30 329.0 31 278.0 8 1 356.0 2 292.0 3 294.0 4 420.0 5 256.0 6 316.0 7 316.0 8 335.0 9 272.0 10 329.0 11 356.0 12 326.0 13 284.0 14 231.0 15 222.0 16 223.0 17 220.0 18 219.0 19 226.0 20 237.0 21 266.0 22 215.0 23 233.0 24 216.0 25 238.0 Name: count, dtype: float64
# How many earthquakes occurred between the 10th and 15th of August 2016?
# Limitation of Python programming language:
# Python does not allow the colon : operator inside of a tuple!
# You can only use the colon operator to indicate a slice directly inside
# a square brackets indexing notation.
magnitudes_per_day.loc[(2016, 8, 10:15), "count"]
Cell In[15], line 2 magnitudes_per_day.loc[(2016, 8, 10:15), "count"] ^ SyntaxError: invalid syntax
# How many earthquakes occurred between the 10th and 15th of August 2016?
# Instead of using the colon : operator, we have to create a slice manually!
magnitudes_per_day.loc[(2016, 8, slice(10, 15)), "count"]
year month day 2016 8 10 329.0 11 356.0 12 326.0 13 284.0 14 231.0 15 222.0 Name: count, dtype: float64
# Remember, range excludes the endpoint.
# Note that slice is the better way to express this because the rules of
# .loc are that the endpoint should be included.
magnitudes_per_day.loc[(2016, 8, range(10, 15)), "count"]
year month day 2016 8 10 329.0 11 356.0 12 326.0 13 284.0 14 231.0 Name: count, dtype: float64
magnitudes_per_day.loc[
# The only reason why range does not include the endpoint in .loc
# is because the range call kind essentially expands the selection like this...
[(2016, 8, 10), (2016, 8, 11), (2016, 8, 12), (2016, 8, 13), (2016, 8, 14)],
"count"
]
year month day 2016 8 10 329.0 11 356.0 12 326.0 13 284.0 14 231.0 Name: count, dtype: float64
magnitudes_per_day.loc[[(2016, 8, 1), (2016, 8, 15)], "count"]
year month day 2016 8 1 356.0 15 222.0 Name: count, dtype: float64
magnitudes_per_day.loc[magnitudes_per_day["count"] < 220, "count"]
year month day 2016 8 18 219.0 22 215.0 24 216.0 Name: count, dtype: float64
# How many earthquakes occurred on each day after 2016-08-10?
magnitudes_per_day.loc[(2016, 8, slice(10, None)), "count"]
year month day 2016 8 10 329.0 11 356.0 12 326.0 13 284.0 14 231.0 15 222.0 16 223.0 17 220.0 18 219.0 19 226.0 20 237.0 21 266.0 22 215.0 23 233.0 24 216.0 25 238.0 Name: count, dtype: float64
magnitudes_per_day.loc[(2016, 8, slice(10)), "count"]
year month day 2016 8 1 356.0 2 292.0 3 294.0 4 420.0 5 256.0 6 316.0 7 316.0 8 335.0 9 272.0 10 329.0 Name: count, dtype: float64
magnitudes_per_day.loc[2016, 8, 10:, "count"]
# .loc expects two arguments: the row indexer and the column indexer
--------------------------------------------------------------------------- IndexError Traceback (most recent call last) Cell In[27], line 1 ----> 1 magnitudes_per_day.loc[2016, 8, 10:, "count"] File /opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py:1147, in _LocationIndexer.__getitem__(self, key) 1145 if self._is_scalar_access(key): 1146 return self.obj._get_value(*key, takeable=self._takeable) -> 1147 return self._getitem_tuple(key) 1148 else: 1149 # we by definition only have the 0th axis 1150 axis = self.axis or 0 File /opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py:1330, in _LocIndexer._getitem_tuple(self, tup) 1328 with suppress(IndexingError): 1329 tup = self._expand_ellipsis(tup) -> 1330 return self._getitem_lowerdim(tup) 1332 # no multi-index, so validate all of the indexers 1333 tup = self._validate_tuple_indexer(tup) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py:1015, in _LocationIndexer._getitem_lowerdim(self, tup) 1013 # we may have a nested tuples indexer here 1014 if self._is_nested_tuple_indexer(tup): -> 1015 return self._getitem_nested_tuple(tup) 1017 # we maybe be using a tuple to represent multiple dimensions here 1018 ax0 = self.obj._get_axis(0) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py:1114, in _LocationIndexer._getitem_nested_tuple(self, tup) 1111 # this is a series with a multi-index specified a tuple of 1112 # selectors 1113 axis = self.axis or 0 -> 1114 return self._getitem_axis(tup, axis=axis) 1116 # handle the multi-axis by taking sections and reducing 1117 # this is iterative 1118 obj = self.obj File /opt/conda/lib/python3.10/site-packages/pandas/core/indexing.py:1386, in _LocIndexer._getitem_axis(self, key, axis) 1384 # nested tuple slicing 1385 if is_nested_tuple(key, labels): -> 1386 locs = labels.get_locs(key) 1387 indexer = [slice(None)] * self.ndim 1388 indexer[axis] = locs File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3419, in MultiIndex.get_locs(self, seq) 3415 continue 3417 else: 3418 # a slice or a single label -> 3419 lvl_indexer = self._get_level_indexer(k, level=i, indexer=indexer) 3421 # update indexer 3422 lvl_indexer = _to_bool_indexer(lvl_indexer) File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/multi.py:3201, in MultiIndex._get_level_indexer(self, key, level, indexer) 3193 def _get_level_indexer( 3194 self, key, level: int = 0, indexer: npt.NDArray[np.bool_] | None = None 3195 ): (...) 3198 # in the totality of values 3199 # if the indexer is provided, then use this -> 3201 level_index = self.levels[level] 3202 level_codes = self.codes[level] 3204 def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): 3205 # Compute a bool indexer to identify the positions to take. 3206 # If we have an existing indexer, we only need to examine the 3207 # subset of positions where the existing indexer is True. File /opt/conda/lib/python3.10/site-packages/pandas/core/indexes/frozen.py:76, in FrozenList.__getitem__(self, n) 74 if isinstance(n, slice): 75 return type(self)(super().__getitem__(n)) ---> 76 return super().__getitem__(n) IndexError: list index out of range
magnitudes_per_day.loc[(2016, 8, 10:), "count"]
Cell In[28], line 1 magnitudes_per_day.loc[(2016, 8, 10:), "count"] ^ SyntaxError: invalid syntax
We can define boolean series using levels from a MultiIndex
by calling get_level_values(level)
.
magnitudes_per_day.index.get_level_values("month") == 7
array([ True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False])
Practice: UFO sightings¶
UFO (unidentified flying object) sightings have received attention from US Congress in the past couple years. We've collected a public dataset consisting of 1001 reported UFO sightings around the world to help us practice groupby
operations.
ufos = pd.read_csv("ufos.csv", index_col="datetime")
ufos
city | state | country | shape | duration (seconds) | duration (hours/min) | comments | date posted | latitude | longitude | |
---|---|---|---|---|---|---|---|---|---|---|
datetime | ||||||||||
10/10/1949 20:30 | san marcos | tx | us | cylinder | 2700.0 | 45 minutes | This event took place in early fall around 194... | 4/27/2004 | 29.883056 | -97.941111 |
10/10/1949 21:00 | lackland afb | tx | NaN | light | 7200.0 | 1-2 hrs | 1949 Lackland AFB, TX. Lights racing acros... | 12/16/2005 | 29.384210 | -98.581082 |
10/10/1955 17:00 | chester (uk/england) | NaN | gb | circle | 20.0 | 20 seconds | Green/Orange circular disc over Chester, En... | 1/21/2008 | 53.200000 | -2.916667 |
10/10/1956 21:00 | edna | tx | us | circle | 20.0 | 1/2 hour | My older brother and twin sister were leaving ... | 1/17/2004 | 28.978333 | -96.645833 |
10/10/1960 20:00 | kaneohe | hi | us | light | 900.0 | 15 minutes | AS a Marine 1st Lt. flying an FJ4B fighter/att... | 1/22/2004 | 21.418056 | -157.803611 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
10/12/1982 05:30 | pearlington | ms | us | light | 29.0 | 29 seconds | Round light which was observed going into spac... | 12/12/2013 | 30.246389 | -89.611111 |
10/12/1985 23:45 | swansboro | nc | us | disk | 300.0 | 23:45 - 23:50 | My sister and I observed a disk for about 5 mi... | 12/2/2000 | 34.687500 | -77.119444 |
10/12/1988 16:30 | melbourne (vic, australia) | NaN | au | cigar | 900.0 | 15 min's | Large cigar shaped craft,flying sideways... | 9/29/2004 | -37.813938 | 144.963425 |
10/12/1994 11:55 | schenectady | ny | us | other | 120.0 | a few minutes | I had just picked up my Daugther (2yrs old) fr... | 4/1/2001 | 42.814167 | -73.940000 |
10/12/1994 15:00 | monticello | ky | us | chevron | 120.0 | 1-2 minutes | Triangular/chevron small object with fixed lig... | 10/30/2006 | 36.829722 | -84.849167 |
1001 rows × 10 columns
Compute the average (mean) "duration (seconds)"
for each UFO "shape"
.
ufos.groupby("shape")["duration (seconds)"].mean()
shape changing 9.265600e+02 chevron 3.111250e+02 cigar 8.217407e+02 circle 6.804353e+02 cone 3.000000e+02 cross 6.000000e+01 cylinder 1.499556e+03 delta 1.440000e+04 diamond 1.140300e+03 disk 1.143329e+03 egg 3.088000e+03 fireball 3.467656e+02 flash 4.639091e+02 formation 1.913088e+03 light 1.122005e+03 other 9.259301e+04 oval 1.425136e+03 rectangle 2.285882e+02 sphere 1.506268e+06 teardrop 1.397143e+02 triangle 7.352900e+02 unknown 1.207963e+03 Name: duration (seconds), dtype: float64
Since we're focusing on US Congress, identify the UFO sighting with the longest "duration (seconds)"
for each "city"
in the US ("us"
). Do not include any cities outside the US.
ufos[ufos["country"] == "us"].groupby("city")["duration (seconds)"].max()
city acton 180.0 addison (i-355 and us 20 (lake st.) 600.0 albany 120.0 albuquerque 3600.0 algona 3600.0 ... wolfforth 300.0 worcester 4.0 yakima 240.0 york 15.0 yuma 900.0 Name: duration (seconds), Length: 627, dtype: float64
What is the name of the "city"
that has the largest count of UFO sightings?
ufos.groupby("city")["city"].count().idxmax()
'seattle'
String accessor functions¶
In data science, many tasks involve string data. In plain Python, we know that we can call string functions like split()
to split a string on whitespace or find(target)
to find the index that a target appears in a string.
To help improve readability of code, the inventors of pandas
provide these functions as element-wise operations but hide them behind a special .str
string accessor such as s.str.split()
.
ufos["comments"].str.split()
datetime 10/10/1949 20:30 [This, event, took, place, in, early, fall, ar... 10/10/1949 21:00 [1949, Lackland, AFB,, TX., Lights, racing,... 10/10/1955 17:00 [Green/Orange, circular, disc, over, Chester&#... 10/10/1956 21:00 [My, older, brother, and, twin, sister, were, ... 10/10/1960 20:00 [AS, a, Marine, 1st, Lt., flying, an, FJ4B, fi... ... 10/12/1982 05:30 [Round, light, which, was, observed, going, in... 10/12/1985 23:45 [My, sister, and, I, observed, a, disk, for, a... 10/12/1988 16:30 [Large, cigar, shaped, craft,flying, sidewa... 10/12/1994 11:55 [I, had, just, picked, up, my, Daugther, (2yrs... 10/12/1994 15:00 [Triangular/chevron, small, object, with, fixe... Name: comments, Length: 1001, dtype: object
The above expression splits each comment by whitespace. This isn't too useful on its own, but we can then compute the length of each list to find the number of words in each comment.
ufos["comments"].str.split().str.len()
datetime 10/10/1949 20:30 24 10/10/1949 21:00 17 10/10/1955 17:00 6 10/10/1956 21:00 26 10/10/1960 20:00 25 .. 10/12/1982 05:30 18 10/12/1985 23:45 16 10/12/1988 16:30 8 10/12/1994 11:55 28 10/12/1994 15:00 10 Name: comments, Length: 1001, dtype: int64
These functions don't modify the original DataFrame
. To add the result as a new column in the original DataFrame
, use an assignment statement.
ufos["word count"] = ufos["comments"].str.split().str.len()
ufos
city | state | country | shape | duration (seconds) | duration (hours/min) | comments | date posted | latitude | longitude | word count | |
---|---|---|---|---|---|---|---|---|---|---|---|
datetime | |||||||||||
10/10/1949 20:30 | san marcos | tx | us | cylinder | 2700.0 | 45 minutes | This event took place in early fall around 194... | 4/27/2004 | 29.883056 | -97.941111 | 24 |
10/10/1949 21:00 | lackland afb | tx | NaN | light | 7200.0 | 1-2 hrs | 1949 Lackland AFB, TX. Lights racing acros... | 12/16/2005 | 29.384210 | -98.581082 | 17 |
10/10/1955 17:00 | chester (uk/england) | NaN | gb | circle | 20.0 | 20 seconds | Green/Orange circular disc over Chester, En... | 1/21/2008 | 53.200000 | -2.916667 | 6 |
10/10/1956 21:00 | edna | tx | us | circle | 20.0 | 1/2 hour | My older brother and twin sister were leaving ... | 1/17/2004 | 28.978333 | -96.645833 | 26 |
10/10/1960 20:00 | kaneohe | hi | us | light | 900.0 | 15 minutes | AS a Marine 1st Lt. flying an FJ4B fighter/att... | 1/22/2004 | 21.418056 | -157.803611 | 25 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
10/12/1982 05:30 | pearlington | ms | us | light | 29.0 | 29 seconds | Round light which was observed going into spac... | 12/12/2013 | 30.246389 | -89.611111 | 18 |
10/12/1985 23:45 | swansboro | nc | us | disk | 300.0 | 23:45 - 23:50 | My sister and I observed a disk for about 5 mi... | 12/2/2000 | 34.687500 | -77.119444 | 16 |
10/12/1988 16:30 | melbourne (vic, australia) | NaN | au | cigar | 900.0 | 15 min's | Large cigar shaped craft,flying sideways... | 9/29/2004 | -37.813938 | 144.963425 | 8 |
10/12/1994 11:55 | schenectady | ny | us | other | 120.0 | a few minutes | I had just picked up my Daugther (2yrs old) fr... | 4/1/2001 | 42.814167 | -73.940000 | 28 |
10/12/1994 15:00 | monticello | ky | us | chevron | 120.0 | 1-2 minutes | Triangular/chevron small object with fixed lig... | 10/30/2006 | 36.829722 | -84.849167 | 10 |
1001 rows × 11 columns
Apply your own functions¶
So what if you want to call your own functions on each element? Call the apply(...)
function on a Series
or DataFrame
and pass in another function as an argument. Let's try writing a program that can remove the trailing parentheticals in the city name for the UFO dataset.
def clean_city_name(s):
"""
Returns all the characters in the given string with trailing parentheticals removed.
>>> clean_city_name("seattle (ballard area)")
'seattle'
>>> clean_city_name("seattle (west)")
'seattle'
>>> clean_city_name("melbourne (vic, australia)")
'melbourne'
>>> clean_city_name("chester (uk/england)")
'chester'
>>> clean_city_name("carrieres sous poissy (france)")
'carrieres sous poissy'
>>> clean_city_name("seattle")
'seattle'
"""
index = s.find("(")
if index == -1:
return s
return s[:index].rstrip()
doctest.run_docstring_examples(clean_city_name, globals())
ufos["city"].apply(clean_city_name).value_counts() # like groupby("city").count()
city new york city 12 seattle 12 tinley park 8 oak forest 8 las vegas 7 .. holiday 1 eagan 1 siloam sprngs 1 canyonlands np 1 monticello 1 Name: count, Length: 774, dtype: int64
In practice, this can be useful for carrying-out data cleaning tasks such as removing punctuation or converting special characters. apply
lets us write and test a function that achieves our task on a single string, and then apply that function to every string in a dataset.