
Exam 2 Solutions 1

Exam 2 Solutions

Question 2 - Implementing zip

class Zip:
 def __init__(self, l1, l2):
 self._l1 = l1
 self._l2 = l2
 self._length = min(len(l1), len(l2))
 self._curr_index = 0

 def has_next(self):
 return self._curr_index < self._length

 def next(self):
 if self.has_next():
 val = (self._l1[self.curr_index], self._l2[self._curr_index])
 self._curr_index += 1
 return val
 else:
 return None

 def reset(self):
 self._curr_index = 0

Question 3 - Miscellaneous Topics

Question 3.1 + 3.2 - Hashing
This hash function does not work.

Explanation (and a good reference answer for 3.2��

This hash function does not work because it is not consistent

with the __eq__ function, meaning it does not return the same

hash value even if they are equal objects. Two IceCream s could

be equal according to __eq__ (same brand and flavor), but

Exam 2 Solutions 2

could hash to different places if they had different scoops

since __hash__ also uses the scoops field.

Question 3.3
There is no single "right answer" here so we accepted any answer that answered

the prompts and demonstrated a clear understanding of one of the ethical

concerns we discussed in class and how it applies to the provided situation. As

the criteria shows, we graded on

Picking 1 case study to compare to

Summarizing an ethical concern from the case study

Comparing that case study to the provided situation

Explanation shows depth of understanding of the problem discussed in class

and how it relates to this provided situation

Question 4 - Machine Learning
Recall that a hyper-parameter is something you specify before training the

model (the choices of which impact the quality of the model that is eventually

learned). The parameters of a model are the specific values learned by the model

during the process of training.

Q4.1 - Number of Hidden Layers
This is a hyper-parameter since it's something that you decide before training

the model.

Q4.2 - Number of Hidden Nodes
This is a hyper-parameter since it's something that you decide before training

the model.

Q4.3 - Weights

Exam 2 Solutions 3

This is a parameter since it is learned by the learning algorithm to make the

network more accurate.

Q4.4 - Bias
This is a parameter, much like the weights. This is learned by the learning-

algorithm to be tuned to the specific value that works for the target task.

Q4.5 - Activation Function
This is a hyper-parameter since it's something you specify about the network,

much like the architecture (number of hidden layers / nodes). We saw a few

examples of different activation functions, and which one you choose would

likely lead to different models learned.

Question 5 - Geospatial

Q5.1 - Join
Below, we show the result as a table for readability, but the specification stated

we wanted your answer written as a CSV. The order of the rows/columns does

not matter

Solution

name continent geometry city country population GDP

W C1 Polygon1 A W 200 20

W C1 Polygon1 B W 100 50

X C2 Polygon3 C X 300 60

Z C1 Polygon2 NaN NaN NaN NaN

Q5.2 - Plot GDP and Population
You don't need to explicitly fillna here since dissolve (like most other pandas)

functions ignores missing-values in the computation (the same effect of it being a

0 for this computation)

https://www.notion.so/W-a65b7515e6244b42803df6fdc4cdf720
https://www.notion.so/W-7509b58a1aa743f185309698427910b4
https://www.notion.so/X-ee0af146d2a04aeab496379dab69f009
https://www.notion.so/Z-68aedd2597664589bb393178fe03df82

Exam 2 Solutions 4

fig, [[ax1, ax2], [ax3, ax4]] = plt.subplots(2, 2)

merged_country = gdf.merge(df, left_on='name', right_on='country', how='left')

grouped_country = merged_country.dissolve(by='name', aggfunc='sum')
grouped_continent = merged_country.dissolve(by='continent', aggfunc='sum')

grouped_country.plot(column='population', legend=True, ax=ax1)
grouped_country.plot(column='GDP', legend=True, ax=ax2)
grouped_continent.plot(column='population', legend=True, ax=ax3)
grouped_continent.plot(column='GDP', legend=True,ax=ax4)

Question 6 - Images

Q6.1 - a * b
Note: There was a typo on the exam that said a + b in one place, but this doesn't

have an impact on the answer since these both don't work for the same reason.

Error. Following the rules of broadcasting, b will be padded to

the left with ones to become a (1, 4) . The problem then

comes from a mismatch in the second dimension where a has

value 3 and b has value 4 since neither of them are 1

meaning neither can be stretched to match the other.

Q6.2 - Mystery 1
Either of the following shapes work

(5, 4)

(5, 1)

Q6.3 - Mystery 3

Error. To make a 3D result, d would need to have 3

dimensions. When adding a (a (4, 3)) to a 3D array, it will be

Exam 2 Solutions 5

padded on the left to a (1, 4, 3) which cannot be broadcasted

since the second and third dimensions disagree with the result

shape and neither are 1.

Question 7 - Convolution
Two common solutions are shown below

def color_convolution(image, kernel):
 kernel_height, kernel_width = kernel.shape
 image_height, image_width, dim = image.shape

 result_height = image_height - kernel_height + 1
 result_width = image_width - kernel_width + 1
 result = np.zeros((result_height, result_width, dim))

 for i in range(result_height):
 for j in range(result_width):
 red = image[i:i+kernel_height, j:j+kernel_width, 0]
 green = image[i:i+kernel_height, j:j+kernel_width, 1]
 blue = image[i:i+kernel_height, j:j+kernel_width, 2]
 result[i, j, 0] = np.sum(red * kernel)
 result[i, j, 1] = np.sum(green * kernel)
 result[i, j, 2] = np.sum(blue * kernel)

 return result

def color_convolution(image, kernel):
 kernel_height, kernel_width = kernel.shape
 image_height, image_width, dim = image.shape

 result_height = image_height - kernel_height + 1
 result_width = image_width - kernel_width + 1
 result = np.zeros((result_height, result_width, dim))

 for i in range(result_height):
 for j in range(result_width):
 for k in range(dim):
 curr = image[i:i+kernel_height, j:j+kernel_width, k]
 result[i, j, k] = np.sum(curr * kernel)

 return result

