CSE 163 Name:
Spring 2019

Practice Exam 1

5/10/2019

Time Limit: 50 Minutes

This is a practice exam for Exam 1. This should be a good indicator of what the actual
exam will look like in terms of formatting and the types of things we want you to show us
that you know. There are a couple ways this exam is different:

1. Some of the programming questions give you a little less space than necessary to write
your answer. The actual exam will have plenty of space for you to write answers.

2. We were not very careful about making sure this practice exam was 50 minutes long.
We thought it would be better to air on the side of too long for practice so you can get
a bit more breadth in the types of things we are looking for. We will be very particular
on the actual exam that it is the right length for 50 minutes.

Remember, you get a cheat sheet that you can use both sides for, and the list of methods
found on the course website will be printed with your exam for you to use as a reference.




CSE 163 Practice Exam 1 - Page 2 of 10 5/10/2019

1. Your English professor sent back your essay, and unfortunately, you didn’t do very well.
However, your professor is giving you a chance to regain some points. All you have to
do is go through your essay and remove all occurrences of a set of words given by your
professor. As a clever programmer, you know you can do this quickly with Python.

Write a function called remove _words that takes two parameters, the first is the name
of a file containing your essay and the second is a set of words to remove. Your function
should print out the new essay with all instances of the words to be removed left out
and return the number of words removed.

The printed essay should have one space between every word and the words should
appear in the same line number that they appear in the original essay; it is okay if the
printed essay has trailing whitespace on the lines since that is difficult to remove this.
Don’t worry about any special cases, such as if the word is followed by a comma, or is
capitalized.

For example, if we had a file called essay.txt with the contents:

The Gettysburg address was like cool and all lol but have you heard
“Now that I Found You” by Carly Rae Jepsen? She is like totally the best.

Then the call remove words(‘essay.txt’, {‘lol’, ‘like’}) would return 3 and
print:

The Gettysburg address was cool and all but have you heard
“Now that I Found You” by Carly Rae Jepsen? She is totally the best.

Hint: There are two ways you can handle printing the words on a line

e print takes an optional named-parameter called end that you can specify to be
the empty string. Example: print(‘hello’, end=’’) would print hello without
a newline afterwards

e Build up each line as a string and print once the line is complete.

Solution:

def remove_words(essay_file, words_to_remove):
with open(essay_file) as f:
count = 0
for line in f.readlines():
for word in line.split():
if word in words_to_remove:
count += 1
else:
print (word, end=’_’)
print ()
return count




CSE 163 Practice Exam 1 - Page 3 of 10 5/10/2019

2. For the following problems, we will be working with the following dataset of food in a
grocery store. There are two main parts to this problem, where the data is represented
differently in each part

e 2.a: The data is stored as a list of dictionaries.

e 2.b: The data is stored as a pandas DataFrame.

name color | price | food_group
broccoli | green | 1.5 vegetable
chicken | pink 6 meat
cheddar | yellow | 4 dairy
mango yellow | 1 fruit
carrot orange | 5.2 vegetable

(a) Write a function called color max_price manual that takes a list of dictionaries
that represents the data above and returns a dictionary that indicates the most
expensive price for each color of food. The returned dictionary should have col-
ors as keys and the largest price for that color as values. For the dataset above,
color max_price manual(data) would return:

{‘green’: 1.5, ‘pink’: 6, ‘yellow’: 4, ‘orange’: 5.2}
The order of the keys in the dictionary does not matter. For full credit, your solution
should run in O(N) time where N is the number of rows in the dataset.

Solution:

def color_max_price_manual (data):
result = {}
for row in data:
color = rowl[’color’]
if color in result:
result [color] = max(result[color],
row[’price’])
else:
result [color] = row[’price’]
return result




CSE 163

Practice Exam 1 - Page 4 of 10 5/10/2019

(b) For the following parts, we will assume we have parsed the above dataset in a
DataFrame named data.

1.

ii.

Consider the following piece of code (newlines added for readability).

datal
(datal[’price’] < 3) & (
(datal[’color’] == ’yellow’) |
(data[’food_group’] == ’vegetable’)
)

1[’price’] .max ()

First, what is the type of the value this expression produces (select one)
(O DataFrame

() Series

\/ float

(O None

(O This code causes an error

Second, write the value this expression evaluates to. If you write out a DataFrame
or a Series, you do NOT need to write out the index but if you write a
DataFrame, you must indicate the column names. If you answered “error” to
the last question, explain why.

Solution: 1.5

Write a function called color max price_pandas behaves exactly the same as
2.a except it takes a pandas DataFrame as a parameter instead of the list of
dictionaries. The return type should still be a dictionary where the order of
the keys does not matter.

Like in the homeworks, for full credit your solution must not use any loops or
comprehensions, except to translate the data to a dictionary at the end (this
loop should not have any computation in it though).

Translating to a dictionary is worth relatively few points in this problem, so if
you don’t know how to do this, just write code to compute values described.

Space is provided on the next page.



CSE 163

Practice Exam 1 - Page 5 of 10 5/10/2019

Solution:

def color_max_price_pandas (data):
return dict(data.groupby(’color’)[’price’].max())

3. For this problem, we will use the Iris dataset we talked about in class, a small sample
is shown below. For the 3.a, we will assume the small sample is the whole dataset for
simplicity purposes, but for the second part about machine learning, we will assume we
have a much larger dataset that is well representative of what we would see in the wild.

sepal_length | sepal _width | petal_length | petal width | species

1 2 3 4 setosa

2 3 4 1 versicolor
3 4 1 2 versicolor
4 1 2 3 virginica

(a) For this part, we will focus on data visualization using the seaborn library.

In the space below, write the code to draw a scatter plot of petal width on the
x-axis and petal length on the y-axis. You should also make each point indicate
the species as the plant by changing the point’s color. Assume that we have
already imported seaborn and renamed it to be sns like normal.

Solution:

sns.relplot(x=’petal_width’, y=’petal_length’,
data=data, hue=’species’)




CSE 163

Practice Exam 1 - Page 6 of 10 5/10/2019

(b)

0 3 O Ul W N

ii. Sketch the scatter plot you created in the last problem. It does not need to be
pixel perfect, but it should be clear which points correspond to which samples.
The graph should be well labeled so the reader can understand the data being
presented. We expect most people to not have colored writing utensils with
them, so you should actually draw the points as different shapes to indicate
color. You should use the following shapes for each species:

e Setosa: square

e Versicolor: circle

e Virginica: star

Solution: (yours would have shapes instead of colors)
40

35

o«
o
.

species
® setosa
versicolor
20 o @ \virginica

petal_length
n
o

1.0 1.5 20 25 3.0 35 4.0
petal_width

This problem involves training a machine learning model to predict the species of
the flowers.

We will make the following assumptions for each problem:

e We are working with the full iris dataset that representative of data in the wild.

e We have already run the code for the proper imports and stored the data in a
variable named iris.

X iris[iris.columns != ’species’]

N iris[’species’]

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.2)

model = DecisionTreeClassifier ()

model.fit(X_train, y_train)

y_test_predict = model.predict(X_test)

print (accuracy_score(y_test, y_test_predict))

For each problem below, we will describe changes to this code above and you will
be asked if this would be an okay change to train the model correctly. Remember,
our goal when training a model is to learn a model that will perform well on future
data and to do so, we generally want to make a good prediction for if we think this
model will do well in the future.



CSE 163

Practice Exam 1 - Page 7 of 10 5/10/2019

i.

ii.

Consider if we were to change the code above in the following way
Line 1: X = iris

Is this setup appropriate such that we train a model that we can use on future
data that has not been labelled yet and we have a confident estimate of its
accuracy on the future data? You should explain your answer in a few sentences
in the box below.

(O True
\/ False

Solution: This will not work because the input features will contain the
label we are trying to predict. This will not work on future data we are
trying to predict labels for since we would require a label as one of the
features.

Consider if we were to change the code above in the following way
Line 5: model.fit(X, y)

Is this setup appropriate such that we train a model that we can use on future
data that has not been labelled yet and we have a confident estimate of its
accuracy on the future data? You should explain your answer in a few sentences
in the box below.

(O True
\/ False

Solution: With this cahnge, we are now training on all of our data, in-
cluding the test set. This will prevent us from getting a good estimate of
future error since our test set is no longer unseen data.




CSE 163 Practice Exam 1 - Page 8 of 10 5/10/2019

4. (a) Write a class called Clock that represents a clock that tracks time. When con-
structed, a Clock class should always start at midnight. The Clock should keep
track of time at the granularity of seconds, but when looking at the time, it should
only show hours and minutes.

When looking at the time, there are two main options which are standard time or
military time. Standard time (or 12-hour time) is what most watches will read like
“12:01 am” or “1:04 pm”. Military time, on the other hand, tries to disambiguate
times by using a 24-hour numbering system instead for the hours. For example, the
two times listed before are “0:01” and “13:04” respectively in military time.

The Clock class should have the following methods with the described arguments.
You should not include any additional arguments for these methods:

Method Description
_init__(self) Constructs an Clock at midnight.
tic(self) Advances the Clock by one second.

get_time(self, ismilitary) | Returns a string representation of the Clock based
in either standard or military time (explained above
with examples). Notice that seconds are not shown.

__eq-_(self, other) Returns true if the other Clock represents the same
time of day (excluding seconds), and false otherwise.
You may assume other is always a Clock.

Write your response in the box on the next page.

(b) In the box below on the next page, write a short program that constructs a Clock
object, increments the time by 10 minutes by calling the tic method, and then
prints the time in military time.

You do not need to write a main method for this problem, you may write the lines
of code directly in the space below.

Solution:

clock = Clock ()

for _ in range (10 * 60):
clock.tic ()

print (clock.get_time (True))




CSE 163 Practice Exam 1 - Page 9 of 10

5/10/2019

Space for the Clock class definition.

Solution:

class Clock:
def  init__(self)
self. hour 0
self. minute =
self. second

def tic(self):
self. second

if self. second
self. second

if self. minute

def get_time (self,
if is_military:

=

= 60:
0

self. minute += 1

60:

self. minute == 0
self. _hour += 1
if self. _hour == 24
self. hour = 0

is_military):

+ str(self. minute)

return str (hour) +

) )

L’ + mark

def __eq__(self, other
return self. hour

self. minute

return str(self. hour) + ’:°
else:
hour = self. hour
mark = ’am’
if hour >= 12:
hour -= 12
mark = ’pm’
if hour == 0:
hour = 12

>:7 4+ str(self. minute) + \

)
other. hour and \
other. minute




CSE 163

Practice Exam 1 - Page 10 of 10

5/10/2019

5. For the following problems, write the run-time of each function using the Big-O notation.
For these problems, we will use n as the variable to describe the length of the input
structure. Your answer should be the “smallest” Big-O runtime possible (i.e. you may
not say O(n'?) as an answer if O(n) is an answer that is closer to the actual run-time).

(a)

def funl (nums):

t =0

for num in nums:
t += 1
t += num
t += 1

return t

def fun?2 (nums):
t =0
for x in nums:
for y in nums:
t += x * y
for x in nums:
t = x *x X
return total

def fun3 (nums) :
if len(nums) <= 2:
return None

x =0

y =0

for i in range(len(nums) -
z =0

for j in range (3):
z += nums[i + j]
y += (z / 3)
x += 1
return y / x

Solution:

O(n)

Solution:

O(n?)

Solution:

O(n)




