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1. Summary of Research Questions: 

a. How can we process messages that makes them machine readable? 

In order to make our message data machine readable, we need to transform 

the raw text message into numerical. We developed 11 features that defines each 

message. Based on these set of features (polarity, subjectivity, word count, average 

word length, adjective ratio, verb ratio, noun ratio, mentions count, urls count, 

exclamation mark count, question mark count), we converted each message into its 

corresponding language features. By inputting numeric language features instead 

of raw messages,our program will be able to process the message data.  

b. How can we train a proper model to recognize which features are relevant to 

popularity? 

Under this problem, we first tried to find the setting for most optimized 

decision tree regressor model regarding message popularity prediction. To do this, 

we first divided language feature generated data it into training, dev, and testing 

sets. Then, through a series of loops, we trained hundreds of models with tweaked 

hyperparameters and tested the model against dev set try to find the minimum test 

mean squared error, mse. Then, with these hyperparameters, we can create an 

optimized model and test it against the testing set to figure out how well our model 

performs. With a relatively high predicting accuracy model, we plotted out the 

internal decision tree of our model. From the decision tree we can easily find out 

the most important language features regarding message popularity. 

c. How can we understand the effect of each language features on message 

popularity? 

With the most important language features found in the last step, we can 

groupBy each user’s predicted popularity with mean, select out the most and least 

popular users and compare their respective important features we found above. 

With these datas,  we can reference the model diagram and confirm our model’s 

splits by graphically represent the relationship between most important features 

and users’ popularity. In the end, after analyze the graph we generated, we will be 

 



 

able to better understand the effect of each important language features on 

message popularity. 

 

2. Motivation and Background 

Our motivation for this project began with an interest in our own group chat. 

We both participate in a small group chat among a large group of friends through 

GroupMe. Our original idea stemmed from an idea of attempting to learn the 

patterns of messages our friends sent in order to attempt to identify which 

message was sent by which friend through a machine learning algorithm. We then 

expanded this idea to focus on a broader detail: the linguistic features that differ 

between a more popular and less popular user within a group chat community. 

What are the most influential language features on determining high popularity and 

low popularity users, and how do these features specifically influence the 

popularity. This research will allow us to find out how to tailor our own messaging 

style so that a bigger amount of people will more likely to read out message and 

help us become more influential.  

 

3. Dataset 

Our main dataset comes from a Gitter’s public chat room between 2014 to 

2017. The chatroom is called freecodecamp, which contains around 5 million 

messages and upwards of 400,000 users. These messages where generously 

uploaded on kaggle for educational purposes. It is in the format of a csv and 

contains column including user information, message information along with time, 

how many people read the message and much. 

 

For more information about the dataset please look up here: 

https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom 

 

 

https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom


 

Our secondary dataset is a small private dataset from the Groupme chats 

between our friends. We provided an anonymized and serialized version of the 

data. 

 

4. Methodology  

Our goal is to create a machine learning algorithm (more specifically, a 

decision tree regressor) which predict message’s popularity given text message. 

and then manually use natural language processing techniques to understand our 

machine learning algorithm.  

Step 1: 

From our original dataset, we need to clean the data and create a more 

useful dataset that is only composed of the user data, the message, the message id, 

the mentions, the URLs and the read bys. Then we will expand the message by 

doing natural language processing on message datas: First tokenize the message 

line and get rid of less meaningful part of each message (for example, breaking 

words). Second, we can create new columns containing language features that our 

learning algorithm can understand. This includes average word length, sentiments 

of the sentence, adjective to word ratio, and other features mentioned earlier. 

Step 2: 

With these features we need to construct a model, a decision tree regressor. 

We should now split our data with 60:20:20 where the majority data is training the 

other other is dev and testing. This allows us to tune hyperparameters which help 

the model perform better. At this point, we need to loop through various 

hyperparameters and find which hyperparameters lead to the lowest error (mean 

squared error) with error being calculated by a model predicting against the dev 

set. 

Once we finalize our hyperparameters, we can create a model with all the 

parameters and test it against the testing set to calculate a score (mse) which 

 



 

classifies our models accuracy. This model is now ready to predict popularity 

scores given textual features. 

Step 3: 

Given our optimized machine learning model, we can now dive deeper into 

the textual analysis and understand why certain features were prioritized than 

others. 

Use the optimized machine learning model we build earlier to predict the 

popularity of active users we selected from whole dataset. Then we will manually 

analyze influential features we find in step 2 to investigate their relationship with 

each users’ predicted popularity. After further understand how do these features 

truly affect users’ popularity and explain the decision of machine learning model, 

we will be able to answer our research question: how to make our messages more 

popular in this group chat? 

 

5. Result 

a. How can we process messages that makes them machine readable? 

In this step, we used three python files, main.py, features.py, clean_data.py 

to process the raw CSV data we get online.  

In the clean_data.py, we wrote a function called clean(), which takes in CSV 

file, removes data rows with text message as noun, and extract data columns that 

we will be need for further analysis, which is 'fromUser.displayName', 

'fromUser.username', 'fromUser.id', 'mentions', 'urls', 'readBy', 'editedAt', 'id', 'text’. 

The other function in clean_data.py is clean_sentence(), which uses regular 

expression to remove any non-alphabetic content of all the message in ‘text’ 

column.  

In the features.py, we have a pack of assistant method and a main method 

called get_features() that work together to generate a list of features, which 

includes polarity, subjectivity, word count, average word length, adjective ratio, 

 



 

verb ratio, noun ratio, mentions count, urls count, exclamation mark count, 

question mark coun. 

In main.py, we imported both clean_data.py and features.py. Taking the CSV 

file as input, main.py read in original dataframe, clean it up, get all the features we 

want from the ‘text’ column and generate a new dataframe contains selected 

columns and new feature columns. Because we converted raw text message into 

columns of numeric features, this new Dataframe will be easily processed by 

python programs. At the end, we pickled the DataFrame into data.pkl for later use. 

b. How can we find out the most influential language features regarding 

messages’ popularity? 

In this part, we spent most of our efforts testing our machine learning model 

trying to figure out the most influential hyperparameter and their most optimized 

setting for our machine learning model that can give back the highest prediction 

accuracy.  

After our testing, we find out ​mac_depth ​ and ​max_leaf_nodes ​ are the two 

most influential parameters regarding our model’s prediction accuracy. Eventually 

we decided to set out model as ​max_depth ​=6, ​max_leaf_nodes​=31, which according 

to multiple testing has the highest prediction accuracy.  

In the end, we used the used our previously prepared testing data to train 

this mode, and printed out the decision tree graph inside of our model: 

 

 



 

From a brief analysis of the decision tree model shows above, we can clearly 

tell that ​mention count, exclamation ratio, polarity, word count, noun ratio, and 

subjectivity ​ were the four most influential language features in this machine 

learning model regarding the prediction of a message's popularity. 

 

c. How can we understand the effect of each language features on message 

popularity?  

In order to further understand our machine learning model, we used the 

previously built machine learning model to predict a readBy number for every 

message in our test data, and then calculated the ​Average Predicted ReadBy (APR) 

for all the users in test data based on their messages’ Predicted ReadBy and sorted 

users in descending order based on average predicted readBy. After filtering out all 

the low active users(message count < 5), we selected the top 5 and bottom 5 users 

regarding their APR number. In the end, we used seaborn library’s catplot object to 

plot out the relationship between top 5 users, bottom 5 users and their the tree 

language features (​mention count, exclamation ratio, polarity, word count, noun 

ratio, and subjectivity) ​we found out in previous question:  

 

 



 

 

 

 

 



 

 

 
*due to the randomness of machine learning prediction, the graphs generated may be different every running the program 

In the 12 graphs above, the x columns show the users ID of either top 5 user 

or bottom 5 user, and y columns show the tree language features (​mention count, 

exclamation ratio, polarity, word count, noun ratio, and subjectivity ​)  

From a brief overview of the set of comparison, we can discover that top APR 

users’ messages are more likely to have smaller values for features like ​exclamation 

count ​ and ​word count​, and have greater or positive values for features include 

polarity​ and ​subjectivity​. For ​mention count ​, top APR users’ messages are more 

likely to have it around 1 mention permessage and bottom APR users’ message are 

more extreme regarding this feature. Most of time, their messages have no 

mention, but there are also some cases that mention count reaches extremely high. 

For ​noun ratio​, top APR users’ messages are more evenly distributed between 5% to 

10%, while bottom APR users’ messages are widely ranging between 0% to 25%. 

 



 

Thinking back to the title of this group chat, freecodecamp, we know that 

this group chat is a very common place for people to share their code with each 

other, therefore a good amount of messages will be pure coding language. After 

sum up all those features differences between top and bottom APR users’ message, 

we think top users’ message features are more resemble the features of human 

language while bottom users’ message feature reminds us of coding language. It is 

common for code people shared to have greater word count than real text 

message, and sometimes even extremely long code (2500+ word count) might be 

shared. For the higher exclamation count, we tend to understand it as a common 

use of logical term in coding language. The lack of sentiment(polarity and 

subjectivity) also shows the features of coding language compared to natural 

language.  

This feature analysis really shows an ironic result: even though, this group 

chat was named after ‘code’, but the code message people shared tend to be less 

popular compared to real human language messages. In conclusion, having a 

stronger personal opinion, and higher positivity will tend to make a message more 

popular. However, greater exclamation count and word count will have negative 

impact on message popularity. Last but not least, consistently mention one person 

and keep the noun ratio of message between 5% to 10% person also contribute to 

higher message popularity. 

 

6. Reproducing the result 

Obtaining the data and preparing the program 

Download the zipped file from kaggle (requires account): 

https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom 

Unzipping it will reveal two csv files inside. We will be using the one named: 

freecodecamp_casual_chatroom_anon.csv ​in our project. ​Download the uploaded 

code zip from gradescope (or git clone from our repo). Take the csv mentioned 

earlier and put it in the data folder. You are now set to run the program 

 

https://www.kaggle.com/freecodecamp/all-posts-public-main-chatroom


 

Running the program 

Extra dependencies: ​textblob​, ​graphviz 

Running main.py will provide a command line interface which provides 

various options to interface. First type `​freecodecamp​` . Then you’ll be given 6 

options to choose from. Options 1-3 provide different percentages to run the 

dataset. Option 1-3 will also generate essential pickle files for analyzation and 

testing in later steps. Option 4 creates a model from a previously saved pickle. 

Option 5 runs the hyperparameters testing from a saved pickle. Option 6 runs the 

suit of feature analysis from a saved pickle. Type `​1​` to run 100% of the dataset 

(took 3-4 hours on my macbook w/ 16gb ram and 2.2ghz intel i7). Once the program 

completes, it will automatically output a pdf (opens automatically on my mac) of a 

graph of our model. 

Also included is a groupme (serialized) dataset which may be a better 

representation of our programs potential. By typing `​groupme​` at the start and 

pressing enter to start, the program will construct a model of the groupme data. 

Feature Analysis 

To run the feature analysis graphs, you must type `​freecodecamp​` and then 

type 6. This run the entire feature analysis suite. 

 

7. Work Plan Evaluation 

In our work plan, we planned to have 5 days to work on cleaning data and 

generating features, 1 days to set and setup optimized machine learning, and 8 days 

to work on analyzing the result from machine learning.  

Our cleaning data process went on smoothly, did not take as much time as 

we expect, mostly due to our good preparation and data exploration during project 

part 0 and part 1. 

However, we significantly underestimated workloads in generating feature 

and machine learning testing. Due to the huge data size (about 5 million messages), 

trying to optimize the efficiency of our program so that running the whole dataset 

 



 

will be less time and memory consuming was one of the biggest challenge we faced 

in this part. Beyond that, repeated machine learning test trying to improve our 

model’s predicting accuracy is another huge time investment. Due to the low 

quality of groupBy column in our dataset to represent messages’ popularity, it was 

significantly harder to make big improvement over our model in this project 

compared to the testing we have done in class before.  

Beside, we also forgot to include time we need to restructure the whole 

project. In the last stage of our project, we spent most of our efforts trying to 

connect all our function through main file and make the whole project easily 

reactable to other users. A lot of debugging and function rewriting appeared in this 

part, which could have been avoided if we start with a more complete idea about 

our project’s structure. 

All these misestimation about time usage in the first two steps lead to an 

extreme time limit for our final analysis. We were only left with two days to work 

on that. As a result, the analysis might be one of the biggest setback from what we 

originally planned. Therefore, if we have any chance to keep develop our project in 

the future, a more through and in depth final analysis will be the main focus.  

 

8. Testing 

Testing cleaning and getting features 

To run the series of tests, you have to type ​freecodecamp​ and type ‘​7​’. This 

will run a suite of tests to help verify whether the data was gathered properly. 

These tests check if the data cleaned contained the right columns whether the 

features produces the right columns and checks all of the gathered features to 

ensure they are within their correct ranges (non-negative word counts, etc). We 

used asserts to ensure the results were expected. 

Logging and the Playground 

While we used our testing file to make sure the most sensitive parts of are 

code worked, we also heavily used the ​logging​ module and breakpoints to figure 

 



 

out where our code was going wrong. When our code runs, the log output is 

printed to the terminal indicated where the program was in processing the data 

and more. This was especially helpful when programs took more than 20 minutes to 

run and we needed to know where it was getting stuck. When figuring out what 

was going wrong when our program got stuck, we manually tested our code using 

breakpoints to play with our data in a interactive shell and test our data for specific 

points.  

Machine learning Test 

In this test, our goal is testing our machine learning model’s various 

hyperparameters to find out the most important hyperparameters regarding model 

prediction’s mean square error and what the optimized setting for those 

parameters so that we can minimized our model prediction’s mean square error. 

We created a file called machine_leaarning_test.py to perform this test. 

Inside of the file our first function is called graph_analysis which takes in 5% of the 

train set data and dev set data to train and test models built with different settings 

of decision tree regressor’s hyperparameters, including: max_depth, 

min_sample_split, min_sample_leaf, min_weight_fraction_leaf,  max_feature, 

max_leaf_nodes, and min_impurity_decrease. For every hyperparameters,  it will 

print out the setting at minimum test mean square root and plot out a graph 

showing relationships between different setting and mean square error for each 

hyperparameters. Following are the graphs we generated: 

 



 

 

 

 

 



 

 

After manually analyzing the graphs, we decided to pick max_depth, 

max_leaf_nodes, and min_impurity_decrease out of the eight hyperparameters to 

further continue the test. 

In the second round of test, we wrote a method called isolated analysis 

which takes in all the train and dev datas. I it will loop over the range of each 

parameter with only ten steps and then choose the place with the lowest test mean 

square root to further looping a smaller range but smaller steps, and eventually it 

found out the optimum setting for all there hyperparameters. 

In the last test, we will be testing the situation when each two pairs of 

hyperparameters are being applied together. By setting one parameter as the 

optimum setting and loop the other one in a range we find out does the optimum 

hyperparameter setting under an interactive situation. 

In this end, we find out the optimum hyperparameter setting for our model 

is: max_depth=6, max_leaf_nodes=31, min_impurity_decrease=0.03. 

 

9. Last Words 

Our goal was to create a model that could predict the popularity of a 

message based on a given dataset. While our error was unbelievably high on the 

freecodecamp dataset (our primary dataset), our error was quite low on the 

groupme data set. We concluded that the ​readBy​ value from the freecodecamp 

dataset was not a good indicator of popularity but our private dataset’s ​likes​ value 

 



 

was. This does make sense with our hypothesis as ​readBys​ represented how many 

people read the post which may or may not be intentional. However, ​likes 

indicate an active push for popularity as the user must click the like button to like 

the message. This showcases that our model does indeed work and could work 

beyond this project. 

 

Our project was developed using git and is available on github here: 

https://github.com/RitikShah/cse163-project 
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