CSE 163 Name:
Spring 2019

Exam 2 - Section Practice

6/03/2019 Student Number:
Time Limit: 50 Minutes

Do not open the exam before the exam begins and close the booklet when time is
called. Starting early or working after time is called will lead to a -10 deduction.
You may write your name and Net ID on the front of the exam before the exam starts.

This exam contains 9 pages (including this cover page) and 4 questions. Some questions
have sub-parts.

You are allowed to have one sheet of paper (both sides) with you as your cheat sheet.
All other materials besides writing utensils should be put away before the exam starts. This
includes all electronic devices like phones, calculators, and smart watches.

This exam is not, in general, graded on style and you do not need to include comments
or imports for your code. Specific questions may specify restrictions about the style of your
code that you must follow to receive full credit.

(Y]

You may not abbreviate any code, such as “ditto” marks or marks. You may
write code to the side and indicate where it should be inserted. These markings must be
unambiguous and any ambiguity when grading may result in a deduction if your code is not
readable. All code and answers should remain within the provided boxes if possible.

You are allowed to ask for scratch paper after the exam starts to use as additional space
when writing answers, but you must indicate on the original page for the problem that part
of the answer is on scratch paper. Scratch paper must be stapled to the END of your exam
after you finish the test. Failure to do so may result in your work on scratch paper not being
accepted while grading.

Initials:
Initial above to indicate you have read and agreed to the rules above.
Failure to initial may result in your exam not being accepted for credit.

Practice Exam Notes

Like before, this practice exam focuses more on covering the breadth of topics you might see
on the exam rather than writing a practice that would take students exactly 50 minutes to
complete. Some of the response pages may be shorter than they would appear on the actual
exam to save space; this means on the real exam, where we will leave plenty of space to write
answers, will likely look much longer even though the amount of content is about the same.

CSE 163 Exam 2 - Section Practice - Page 2 of 9 6/03/2019

1. For this problem, you will be writing a simplified DataFrame class to explore one way to
implement the pandas functionality. You may not use pandas to solve this problem. In
the space provided, write a class named DataFrame that has the following methods.

e An initializer that takes the data the DataFrame will store in the list of dictionaries
format. You may assume each dict row has the same set of column names.

o Write method named get that takes two optional parameters for a row index and
a column name. You may assume if values are passed for the row or column, that
they are valid entries in the DataFrame; you do not need to handle slices or list of
rows/cols, just single values for each. This method behaves differently depending
on which parameters are passed:

— If neither the row or column are specified, returns None

— If the row is specified but not the column, returns the dict row at the given
index.

— If the column is specified but not the row, returns a list of all the values for
that column.

If both are specified, returns the single value for the given row an column.

The class should have private fields, but you don’t need to worry about returning or
storing references to data the client might have a reference to.

CSE 163 Exam 2 - Section Practice - Page 3 of 9 6/03/2019

2. This question has a few short answer questions on miscellaneous topics from the quarter.

(a) Assume we have the following hash function defined in a Card class that represents
a card in a deck of cards

def _ _hash (self):
return O

In the space below, describe whether or not this hash function is functionally correct.
If it is not correct, explain what causes it to break a hash table that uses it. If it is
correct, explain whether or not this is a good hash function. Make sure you clearly
answer the first question in your response

(b) Below we have defined a function that may or may not have a bug. In the space
on the next page, write "No bug” if there is no bug in the program. If there is
a bug, write a short program that constructs a small set of inputs and uses the
assert_equals(expected, received) we have been using from csel163_utils.

def contains(data, col, val):
nimnn

Takes a list of dictionaries that represents
tabular data, a column mname, and a value and
returns True if the gtiven wvalue appears anywhere
in the given column and false otherwise.

Assumes col is a wvalid column in the dataset.

niumnn
for row in data:
if row[col] == wval:
return True

else:
return False

CSE 163 Exam 2 - Section Practice - Page 4 of 9 6/03/2019

(c) Consider the task of using a neural network that takes pixel images of a hand-
written lowercase letter (a-z) and predicts which letter was written. The input
images are 10 pixels by 10 pixels and there are 26 possible letters.

In the space below, indicate the number of input neurons and output neurons the
simple neural network described in class that solves this task.

Input Neurons: Output Neurons:

3. For this problem, assume we have the following datasets. The first is a regular DataFrame
stored in a variable named df, while the geo-spatial dataset stored in a GeoDataFrame

named gdf:
df gdf
city country | emissions name geometry
Seattle U.S.A 10 Japan Polygonl
Portland | U.S.A 30 South Korea | Polygon2
Tokyo Japan 20 U.S.A Polygon3
Pyrus Genovia | 40

(a) What is the resulting table when executing the following join?

df .merge (gdf, left_on='country', right _on='name',
how='right')

Make sure to include all of the column names.

CSE 163

Exam 2 - Section Practice - Page 5 of 9 6/03/2019

(b)

In the space below, write a function called missing matches that takes two pa-
rameters, one for each of the datasets described above. The function should return
a new DataFrame that has all the rows from the datasets that do not have a corre-
sponding row in the other when merging on country and name. For example, if we
were to call the function with the datasets described above:

missing matches(df, gdf)

It would return a DataFrame with the following values:

city | country | emissions | name geometry
Pyrus | Genovia | 40 NaN NaN
NaN NaN NaN South Korea | Polygon2

Your code should work on any dataset with this column layout. This means you
should not assume any specific rows are in the data when writing your solution.

In the space below, write a function that plots a map of the world where each
country is colored by the total emissions of cities in that country. Countries that
do not have any emissions data should not be plotted. Your plot should include a
legend and you should save the plot to a file called 'world_emissions.png'.

You do not need to write a function, you may assume the variables df and gdf
defined at the beginning of the problem exist, and we have run the standard code
to import matplotlib as plt. You should not assume the data is limited to the
rows shown above but you may assume the datasets have the columns described.
You may assume operations that combine a DataFrame and a GeoDataFrame returns
a GeoDataFrame.

CSE 163 Exam 2 - Section Practice - Page 6 of 9 6/03/2019

4. The following problems relate to image processing.

(a) Assume we have the following three numpy arrays defined. We show the name and
the shape above each array

a (4, 3) b (4,) c (4, 1)
olof1 11\2\3\4\ 1
o[1]o0 2
011 3
1/o]o 4

In the spaces below, write out the results of the following arithmetic operations as
well as writing down the shape of the result. If the result is an error, indicate so
and write a sentence or two explaining why it is an error.

. a + a

ii. a+ b

ii. a + ¢

iv. ¢ + b

CSE 163 Exam 2 - Section Practice - Page 7 of 9 6/03/2019

(b) Write a function called stripes that takes a color image (a (n, m, 3) numpy
array) and returns a new color image that is the result removing a certain color
from certain ranges of pixels. The result will be horizontal stripes of differing colors
on top of the image.

To do this, we will break the image into 3 pieces by height. The top most section of
the image (corresponding to pixels near height 0), should have all red pixels set to
0. The middle third should have all green pixels set to zero. The remaining third
should have the blue pixels set to 0. If the image has a height that is not evenly
divisible by 3, the leftover pixels can be included in any of the sections that have
had their color changed as described above.

Your method should not modify the input array. For full credit, your solution
should have no loops that loop over the image.

(c) Write a function called compress that takes a gray-scale image (numpy array with
shape (n, m)) that compresses 2x2 patches of the image by taking the average of the
pixel values. This method should behave differently than the standard convolution
code we have seen before in the sense that the patches should not overlap. For
example, if we had the following image named img:

11231
211122
21211
212|117

If we call compress(img), it would return a numpy array with the following values

1.5 2
2 2.5

Notice that the resulting size is (2, 2) because we don’t let the patches overlap
(resulting in two positions across the width of this example image).

CSE 163 Exam 2 - Section Practice - Page 8 of 9 6/03/2019

You do not need to worry about casting the values to integers. You may assume
the given image is square and has an even width /height. Your method should not
modify the given array, but instead should return a new one. For full credit, your
solution should only have two loops.

CSE 163 Exam 2 - Section Practice - Page 9 of 9 6/03/2019

e Built-in Python functions « Pandas methods
— print (*strings) — mean()
— range(end) / range(start, end, step?) — min() / max()
— abs(v) — idxmin() / idxmax()
— min(v1l, v2) / max(vl, v2) — count ()
— sum(vl, v2) — unique()
— open(fname) — groupby(col)
— zip(11, 12) — apply(fun)
— Types: — isnull() / notnull()

int (v),float(v),str(v),bool(v) ~ dropna() / £illna(v)

e String methods — sort_values(col) / sort_index()
— upper (), lower () — nlargest(n, col)
— find(s) — merge(df, left_on, right_on, how)
— strip(Q) o Pandas fields
— split() — index
¢ List methods — loc[row, coll
— Construct: 1ist() or [] o Geopandas obnject methods
— append(val)

— plot(column?, legend?, ax?, color?, vmin?, vmax?)

— extend(lst) — dissolve(by, aggfunc)

— insert(idx, val) — Any of the pandas functions above

— remove(val)
e Geopandas module methods

— pop(idx)
_ index(val) — geopandas.sjoin(left, right, op, how)
— reverse() + matplotlib model classes
— sort(key?) — plt.subplots(nrows, ncols)
o Set methods — plt.show()

— Construct: set() — plt.savefig(f_name)

— add(val) e numpy module methods
— remove(val) — np.array(vals?)
« Dictionary methods — np.arange(end) / np.arange(start, end, step?)

— np.ones(shape) / np.zeros(shape)

Construct: dict() or {}
— np.dot(al, a2)

— keys(Q)
_ values() — np.sum(a) / np.min(a) / np.max(a) / np.mean(a)
— items() e numpy array object methods
e Special object methods — reshape (shape)
_ init — sum() /min() / max() / mean()
— __repr — copy O
— __eq e numpy module methods

— __hash__ — shape

