
CSE 163 Name:
Spring 2019
Exam 1
5/10/2019 Student Number:
Time Limit: 50 Minutes

Do not open the exam before the exam begins and close the booklet when time is
called. Starting early or working after time is called will lead to a -10 deduction.
You may write your name and Net ID on the front of the exam before the exam starts.

This exam contains 13 pages (including this cover page) and 5 questions. Some questions
have sub-parts. There are 90 possible for this exam with a point breakdown listed below.

You are allowed to have one sheet of paper (both sides) with you as your cheat sheet.
All other materials besides writing utensils should be put away before the exam starts. This
includes all electronic devices like phones, calculators, and smart watches.

This exam is not, in general, graded on style and you do not need to include comments
or imports for your code. Specific questions may specify restrictions about the style of your
code that you must follow to receive full credit.

You may not abbreviate any code, such as “ditto” marks or “...” marks. You may
write code to the side and indicate where it should be inserted. These markings must be
unambiguous and any ambiguity when grading may result in a deduction if your code is not
readable. All code and answers should remain within the provided boxes if possible.

You are allowed to ask for scratch paper after the exam starts to use as additional space
when writing answers, but you must indicate on the original page for the problem that part
of the answer is on scratch paper. Scratch paper must be stapled to the END of your exam
after you finish the test. Failure to do so may result in your work on scratch paper not being
accepted while grading.

Initials:
Initial above to indicate you have read and agreed to the rules above.
Failure to initial may result in your exam not being accepted for credit.

Question Points Score

1 10

2 25

3 25

4 20

5 10

Total: 90



CSE 163 Exam 1 - Page 2 of 13 5/10/2019

(This page is left intentionally blank)



CSE 163 Exam 1 - Page 3 of 13 5/10/2019

1. (10 points) Write a function called reverse_file that takes the name of a file as a
parameter and that prints out the file line-by-line, but the lines appearing in the reverse
order that they appear in the file.

For example, if we had a file called poem.txt and called reverse_file('poem.txt'):

poem.txt

She sells
sea shells
by

the sea shore

reverse_file('poem.txt')

the sea shore

by
sea shells
She sells

Hint: Be careful with new-lines. You may assume every line in the original file ends
with a single-newline and does not begin with any white space characters. The output
should not contain any blank lines unless it’s a corresponding blank line from the input.

Solution:
def reverse_file(file_name):

with open(file_name) as f:
lines = f.readlines()
for i in range(len(lines) - 1, -1, -1):

print(lines[i].strip())



CSE 163 Exam 1 - Page 4 of 13 5/10/2019

2. (25 points total) For the following problems, we will be working with the carbon emissions
dataset shown below. There are two main parts to this problem, 2.a represents the data
as a list of dictionaries and 2.b represents it as a pandas DataFrame.

city country emissions population
New York USA 200 1500
Paris France 48 42
Beijing China 300 2000
Nice France 40 60
Seattle USA 100 1000

(a) (10 points) Write a function called max_epc_manual that takes two parameters, a
list of dictionaries representing the data above and a name of a country, and returns
the name of the city in the given country that has the highest carbon emissions per
capita (unit of emissions per person).
For example, if the data described above is stored in a variable called data, then
the call max_epc_manual(data, 'USA') would return 'New York' because it has
an emissions per capita of 0.133 while Seattle’s is only 0.1.
You may assume no population is 0, that all emissions are non-negative, and there
are no missing values. If there is a tie in the carbon emissions per capita, you
should return the name that appears earlier in the dataset. If there are no rows in
the dataset for the given country, your function should return None. For full credit,
your solution should run in O(n) time where n is the number of rows in the dataset.

Solution:
def max_epc_manual(data , country):

max_epc = -1
city_name = None
for row in data:

if row['country'] == country:
epc = row['emissions'] / row['population']
if epc > max_epc:

max_epc = epc
city_name = row['city']

return city_name



CSE 163 Exam 1 - Page 5 of 13 5/10/2019

(b) For the following parts, we will assume we have parsed the above dataset in a
DataFrame named data.

i. (5 points) Consider the following piece of code (newlines added for readability).

dict(data[data['population] >= 50]
.groupby('country')['emissions'].max())

First, what is the type of the value this expression produces (select one)
© DataFrame
© Series
√

dict (dictonary)
© float
© None
© This code causes an error

Second, write the value this expression evaluates to. If you write out a DataFrame
or a Series, you do NOT need to write out the index but if you write a
DataFrame, you must indicate the column names. If you answered “error” to
the last question, explain why in at most two sentences.

Solution:

{'China': 300, 'France': 40, 'USA': 200}

ii. (10 points) Write a function called max_epc_pandas behaves exactly the same
as 2.a except it takes a pandas DataFrame as a parameter instead of the list of
dictionaries.

Like in the homeworks, for full credit your solution must not use any loops or
comprehensions. Your solution should run in O(n) time where n is the number
of rows in the dataset.

Hint: Remember, you are able to arithmetic between columns of DataFrames.
For example if you had a DataFrame named df and wrote df['a'] + df['b'],
it would return a new Series that, at each index, stores the sum of the values
at the same index from column a and b.

Space is provided on the next page.



CSE 163 Exam 1 - Page 6 of 13 5/10/2019

Solution:
def max_epc_pandas(data , country):

data = data[data['country'] == country]
if len(data) == 0:

return None

max_idx = (data['emissions'] / data['population']).idxmax()
return data.loc[max_idx , 'city']

3. (25 points total) For this problem, we will use a modified dataset from Problem 2 that
has an additional column for if the city is environmentally friendly. For the 3.a, we will
assume the small sample is the whole dataset for simplicity purposes, but for the second
part about machine learning, we will assume we have a much larger dataset that is well
representative of what we would see in the wild. For each problem, we will assume the
data has been parsed as a DataFrame in a variable called data.

city country emissions population is_green
New York USA 200 1500 no
Paris France 48 42 no
Beijing China 300 2000 no
Nice France 40 60 yes
Seattle USA 100 1000 yes

(a) For this part, we will focus on data visualization using the seaborn library.
i. (9 points) In the space below, write the code to draw a bar plot of that shows

the emissions of each city that has less than or equal to 1000 people for a
population. The plot should color each city to indicate whether or not the city
is ”green”. Assume we already ran import seaborn as sns and sns.set().

Solution:
sns.catplot(x='city', y='emissions', kind='bar',

data=data[data['population'] <= 1000],
hue='is_green')



CSE 163 Exam 1 - Page 7 of 13 5/10/2019

ii. (6 points) Sketch the bar plot you created in the last problem. It does not need
to be pixel perfect, but it should accurately convey the data. The graph should
have labeled axes and a legend explaining the colors. For drawing purposes,
you should shade in the bars that represent ”green” cities and leave the other
bars white.

Solution: (yours would have “yes” shaded instead of colors)



CSE 163 Exam 1 - Page 8 of 13 5/10/2019

(b) This problem involves training a machine learning model to predict whether or not
a city is ”green”.
We will make the following assumptions for each problem:

• We are working with a larger dataset that representative of data in the wild.
• We have already run the code for the proper imports and stored the data in a

variable named data.
Below is the standard code for training a machine learning model on this data. The
following questions will ask you about why we need each step in this process. For
the following questions, your answer should be a one or two sentence description. A
valid answer for any of the questions is “it’s not necessary”, in which your answer
should describe why the step is not necessary.

Remember that our goal in machine learning is to predict the value for future,
unlabelled data and to get a good estimate of how our model will perform on that
future data.

1 X = data[data.columns != 'is_green']
2 X = pd.get_dummies(X) # transforms categorical data
3 y = data['is_green']
4 X_train , X_test , y_train , y_test = \
5 train_test_split(X, y, test_size=0.2)
6 model = DecisionTreeClassifier()
7 model.fit(X_train , y_train)
8 y_test_predict = model.predict(X_test)
9 print(accuracy_score(y_test , y_test_predict))



CSE 163 Exam 1 - Page 9 of 13 5/10/2019

i. (3 points) In Line 1, why is it necessary to remove the 'is_green' column
from the data?

Solution: If we didn’t remove the 'is_green' column, the decision tree would use that
value as a feature. This would not work when predicting future data since it would
require we already know the value we are predicting as a feature.

ii. (3 points) In Line 2, why is it necessary to call the get_dummies function for
this dataset?

Solution: All of the rules in the DecisionTree are based on if some feature is less than
some value. This does not work with categorical data like the 'city' column so we must
transform the data to make this data numeric.

iii. (4 points) Why is it necessary to split the data into a train set and a test set?

Solution: In order to get a good estimate of how we will do on future data, we need to
evaluate our model on data it has not yet seen. Splitting into a train and test set lets us
test our model on data it has not seen.



CSE 163 Exam 1 - Page 10 of 13 5/10/2019

4. (a) (15 points) Write a class called Election that represents an election where people
vote for a candidate. An Election has a fixed set of candidates that may be voted
for, allows people to vote for their candidate, and can determine the winner of the
election. The winner of the election is the person with the most votes.

The Election class should have the following methods with the described argu-
ments. You should not include any additional arguments for these methods:

Method Description
__init__(self, candidates) Creates an Election with the given list of candidates.

The order of the candidates does not matter.
Elections start with no votes for any candidate.

vote(self, candidate) Casts a single vote for the given candidate. If the vote
is for a candidate not in this election, the vote is ignored.

winner(self) If there is a unique winner for the election (i.e. more votes
than any other candidate), this method returns the name
of the winner. If there is no unique winner this function
should return None.

__eq__(self, other) Returns True if this election has the exact same set of
candidates as the other and each candidate has the same
number of votes in both Elections. Returns False if not.
You may assume other is an Election.

The None return for winner is worth relatively few points for the problem. If you
can’t figure that part out, just consider the case where there is a candidate with
more votes than any other. Write your response in the box on the next page.

(b) (5 points) In the box below, write a short program that constructs an Election
between Pedro and Summer, casts 3 votes for Pedro and 2 for Summer, and then
prints the name of the winner by calling the winner method. You should not access
the fields of the Election object in this program, you should only call methods.
You do not need to write a main method for this problem, you may write the lines
of code directly in the space below.

Solution:
election = Election(['Pedro', 'Summer'])
for i in range(3):

election.vote('Pedro')

for i in range(2):
election.vote('Summer')

print(election.winner())



CSE 163 Exam 1 - Page 11 of 13 5/10/2019

Solution:
class Election:

def __init__(self , candidates):
self._votes = {c: 0 for c in candidates}

def vote(self , c):
if c in self._votes:

self._votes[c] += 1

def winner(self):
top_name = None
top_count = -1
for c in self._votes.keys():

votes = self._votes[c]
if votes > top_count:

top_count = votes
top_name = c

elif votes == top_count:
top_name = None

return top_name

def __eq__(self , other):
return self._votes == other._votes



CSE 163 Exam 1 - Page 12 of 13 5/10/2019

5. (10 points total) For the following problems, write the run-time of each function using
the Big-O notation. For these problems, we will use n as the variable to describe the
length of the input structure. Your answer should be the “smallest” Big-O runtime
possible (i.e. you may not say O(n12) as an answer if O(n) is an answer that is closer
to the actual run-time).
(a) (21/2 points)

def fun1(nums):
t = 0
for num in nums:

t += 1
t += num
t += 1

for i in range(len(nums)):
t = t + i

return t

Solution:

O(n)

(b) (21/2 points)
def fun2(nums):

t = 0
for x in nums:

for y in nums:
t += x * y

for y in nums:
t -= x + y

return total

Solution:

O(n2)

(c) (21/2 points)
def fun3(nums):

t = 0
for i in range(3):

for j in range(len(nums)):
for k in range(10):

t += i * j * k
return t

Solution:

O(n)

(d) (21/2 points)
def fun4(nums):

return max(nums) / min(nums)
Solution:

O(n)



CSE 163 Exam 1 - Page 13 of 13 5/10/2019

• Built-in Python functions

– print(*strings)

– range(end)

– range(start, end[, step])

– abs(v)

– min(v1, v2) / max(v1, v2)

– sum(v1, v2)

– open(fname)

– Types:
int(v),float(v),str(v),bool(v)

• String methods

– upper(), lower()
– find(s)

– strip()

– split()

• List methods

– Construct: list() or []
– append(val)

– extend(lst)

– insert(idx, val)

– remove(val)

– pop(idx)

– index(val)

– reverse()

– sort(key=None)

• Set methods

– Construct: set()
– add(val)

– remove(val)

• Dictionary methods

– Construct: dict() or {}
– keys()

– values()

– items()

• File methods

– readlines()

– read()

• Pandas methods

– Parse: pd.read_csv(file_name)
– mean()

– min() / max()

– idxmin() / idxmax()

– count()

– unique()

– groupby(col)

– apply(fun)

– isnull() / notnull()

– dropna() / fillna(v)

– sort_values(col)

– sort_index()

– nlargest(n, col)

• Pandas fields

– index

– loc[row, col]

• Seaborn methods

– sns.catplot(x, y, data, kind[, hue])
kind: [“count”, “bar”, “violin”]

– sns.relplot(x, y, data, kind[, hue[, size]])
kind: [“scatter”, “line”]

– sns.regplot(x, y, data)

• sklearn methods

– sklearn.metrics.accuracy_score(y_true, y_pred)

– sklearn.metrics.mean_square_error(y_true, y_pred)

– sklearn.model_selection.train_test_split(X, y, test_size)

• sklearn model classes

– sklearn.tree.DecisionTreeClassifier()

– sklearn.tree.DecisionTreeRegressor()

• sklearn model methods

– fit(X, y)

– predict(X)

• Special object methods

– __init__

– __repr__

– __eq__


