

Full Name:

Email Address (UW Net ID): @uw.edu

Section:

CSE 160 Autumn 2025 - Midterm Exam

Instructions:

●​ You have the entire class period (50 minutes) to complete this exam.
●​ The exam is closed book, including no calculators, computers, phones, watches or other electronics.
●​ You are allowed a single sheet of notes for yourself.
●​ We also provide a syntax reference sheet.
●​ Turn in all sheets of this exam, together and in the same order when you are finished.
●​ When time has been called, you must put down your pencil and stop writing.

○​ Points will be deducted if you are still writing after time has been called.
●​ You may only use parts and features of Python that have been covered in class up to this point.
●​ You may ask questions by raising your hand, and a TA will come over to you.

Good luck!

Question Topic Points

Question 1 Expressions 10

Question 2 Functions 8

Question 3 File I/O 8

Question 4 Lists 12

Question 5 Nested Structures 12

1 (10 pts). Given the table below, fill in the correct values and type for the matching expression. In cells with
multiple lines of code, we ask that you evaluate the last line of code after the lines above are run. In other
words, what will be outputted if this code is run in the Python interpreter. If there is an error, write "Error" in the
value column. (You may leave the type column blank, and you do not have to explain the error.)

Expression Value Type

x = 3
y = 7
x > y

3 / 2 + len("hello")

[1, 3, 5][1] + {"1": 1, "2": 2,
"3": 3}["1"]

"I am taking " + 160

str(3456) + "boom"

2 (8 points). Consider the following functions.

 def bibbity(a, b):
​ result = ""
​ for i in range(a, b):
​ if i % 2 == 0:
​ result += "*"
​ return result

def bobitty(pumpkin):
​ c = pumpkin[0]
​ d = pumpkin[len(pumpkin) - 1]
​ return bibbity(c, d)

def boo(mice, pumpkin):
​ wand = mice + "!"
​ carriage = bobitty(pumpkin)
​ if len(wand) >= len(carriage):
​ ​ return("Dress!")
​ else:
​ ​ return("midnight")

What is the output of the following function calls? If there is an error, write “Error”. You do not need to specify
the error.

Input Output

boo("***", [1])

boo("*******", [])

boo("*", [1, 2])

boo("*****", [2, 8, 7, 12, 15])

3 (8 points). Consider the file shops.csv below. The file contains the name of a chain restaurant or shop
along with all the reviews each individual store has received. You can assume each shop name only appears
once.

shops.csv:
McDonalds,1,4,2,3,3
Taco Bell,1,2,3,3,3
Chik-fil-A,4,3,5,2,1
Starbucks,2,3,3,2,2
Victrola,4,5,4,5,5
Tim Hortons,4,3,3,2,1

Your friend tried to write code that would read in the file and store the contents in a dictionary where the key is
the store name and the value associated with the key is a list of all its reviews as integers. The intended output
is shown below:

{'McDonalds': [1, 4, 2, 3, 3], 'Taco Bell': [1, 2, 3, 3, 3],
 'Chik-fil-A': [4, 3, 5, 2, 1], 'Starbucks': [2, 3, 3, 2, 2],
 'Victrola': [4, 5, 4, 5, 5], 'Tim Hortons': [4, 3, 3, 2, 1]}

However, your friend has tried but can’t seem to figure out why their code is not working correctly. Their code is
below:

1 file = open(shops.csv)

2 d = {}

3

4 for line in file:

5 data = line.strip().split()

6 d[data] = []

7 for r in data:

8 d[data[0]].append(r)

9 file.close()

Continued on the next page…

Name the line number(s) that contain errors. You do not need to specify what the error is. For each line you
identify as containing an error, rewrite the line so that it's now correct. Fixing all errors should lead to the code
achieving the correct output. You cannot add or remove lines of code, you can only update the existing lines.
You may structure your answer like the following:

Line X has an error. The correct version is <correct version of the code>

// Write your answers here

4 (12 points). Suppose you are given a nested list where each list represents a student along with their score
on 3 assignments. Write a function gradebook() that takes in the nested list and returns a dictionary where
the key is the student name and the value is their average score across those three assignments. You cannot
use any built in sum() or avg() Python methods.

An example of what your function should generate is shown below:

grades =[['Trixie', 70, 100, 88],
 ['Ricky', 77, 86, 83],
 ['Steve', 75, 62, 94]]

gradebook(grades) → {'Trixie': 86.0, 'Ricky': 82.0, 'Steve': 72.0}

Write your code here

5 (12 pts)

5a (6 pts). Write a function get_diagonal that takes in a nested list and returns a new list of items that form
a diagonal across the nested list. You can assume the nested list makes a square, i.e. the nested list contains
n lists that each have n elements. Your solution should work for a squared nested list of any size. For example:

nested_list = [["I", 5, "hello", 4.20, "Nailing"],
​ ​ ​ [77, "love", 87.23, "my", 2],
​ ​ ​ [2000, 5241, "CSE", "?", 4],
​ ​ ​ ["wow", "exam", 69, 160, False],
​ ​ ​ ["rn", 1, "pumpkin", True, "!"]]

get_diagonal(nested_list) should return
["I", "love", "CSE", 160, "!"]

Write your solution here

5b (6 pts). Now rewrite this function as reverse_diagonal to return the diagonal in the opposite direction.
Do not use .reverse(). Your solution should work for a squared nested list of any size. The code should
return:

["Nailing", 'my', 'CSE', 'exam', "rn"]

Write your solution here

Extra Credit (1 point): Draw anything (keep it PG and appropriate).

CSE 160 25au Midterm Exam Cheat Sheet

if/elif/else syntax
if condition1:

statements

elif condition2:

other statements

else:

more statements

for loop syntax
for i in sequence:

statements

function definition syntax

def function_name(param1, param2,
…):

statements

Function Description
range([start,] stop [, step]) Returns a sequence of numbers from start (inclusive) to

stop (exclusive) incremented by step

len(lst) Returns the number of elements in lst

Lists
Function Description
lst = [] Creates an empty list

lst[idx] Returns the element in lst at index idx

lst[start : end] Returns a sublist of lst from index start to index end (exclusive)

lst[start : end : step] Returns a sublist of lst from index start (default 0) to index end
(exclusive, default len(lst)), incrementing by step

lst.append(elmt) Adds the element elmt to the end of lst. Returns None.

lst.extend(other) Adds each of the elements in the list other to the end of lst. Returns None.

lst.index(elmt) Returns index of the first occurrence of elmt in lst, error if elmt is not in
lst

lst.count(elmt) Returns the number of times elmt occurs in lst

lst.remove(elmt) Removes first occurrence of elmt from lst, error if elmt is not in lst.
Returns None.

lst.pop(idx)
lst.pop()

Removes and returns the element at index idx in lst.
With no parameter, removes the last element in lst

lst.insert(idx, elmt) Inserts an element elmt in lst at index idx. Returns None.

lst.sort() Sorts the given list lst. Returns None.

lst.reverse() Reverses the order of elements in the list lst. Returns None.

File I/O
Function Description
my_file = open(filepath) Opens the file with given filepath for reading, returns a file object

my_file.close() Closes file my_file

with open(filepath) as f:
read file

Opens the file with given filepath for reading via the file object f
in the body of the “with” statement.

str.strip() Given a string str, remove any trailing or ending whitespace.

str.split([separator]) Given a string str, splits the string on the optional separator (will
split on spaces if no separator is given) and returns a list of
separated strings.

Process one line at a time:
for line_of_text in my_file:

process line_of_text

Process entire file at once
all_data_as_a_big_string = my_file.read()

Dictionaries

Function Description
my_dict = {}
my_dict = dict()

Creates a new, empty dictionary

my_dict[key] Returns the value associated with the given key in my_dict

del my_dict[key] Removes the key (and its associated value) from my_dict

list(my_dict.keys()) Returns a list of keys in my_dict

list(my_dict.values()) Returns a list of values in my_dict

list(my_dict.items()) Returns a list of tuples of the form (key, value)

Process each key-value pair together:
for key, value in my_dict.items():

process key and value

Process one key at a time

for key in my_dict:

use dictionary’s key

Common Error Names

IndexError – Index out of range
KeyError – Key not found in dictionary
IndentationError – Invalid indentation
TypeError – Operation applied to invalid combination of types
ValueError – Function gets properly typed argument, but invalid value
SyntaxError – Invalid Python syntax
NameError – Variable name not found
FloatingPointError – Floating point operation fails
RuntimeError – Otherwise Unknown Error

	CSE 160 Autumn 2025 - Midterm Exam

