Full Name:

Email Address (UW Net ID): @uw.edu

Section:

CSE 160 Autumn 2025 - Midterm Exam

Instructions:
You have the entire class period (50 minutes) to complete this exam.
The exam is closed book, including no calculators, computers, phones, watches or other electronics.
You are allowed a single sheet of notes for yourself.
We also provide a syntax reference sheet.
Turn in all sheets of this exam, together and in the same order when you are finished.
When time has been called, you must put down your pencil and stop writing.
o Points will be deducted if you are still writing after time has been called.
You may only use parts and features of Python that have been covered in class up to this point.
You may ask questions by raising your hand, and a TA will come over to you.

Good luck!

Question Topic Points
Question 1 Expressions 10
Question 2 Functions 8
Question 3 File 110 8
Question 4 Lists 12
Question 5 Nested Structures 12

1 (10 pts). Given the table below, fill in the correct values and type for the matching expression. In cells with
multiple lines of code, we ask that you evaluate the last line of code after the lines above are run. In other
words, what will be outputted if this code is run in the Python interpreter. If there is an error, write "Error” in the
value column. (You may leave the type column blank, and you do not have to explain the error.)

Expression

Value

Type

b b
vl
od W

3/ 2 4+ len("hello")

[lr 3/ 5]] + {"1":
[l

"3": 3}

1,

"2":

2,

"I am taking " + 160

str(3456) + "boom"

2 (8 points). Consider the following functions.

def bibbity(a, b):
result = ""
for i in range(a, b):
if 1 $ 2 == 0:
result += "*x"
return result

def bobitty (pumpkin) :
c = pumpkin[0]
d = pumpkin[len (pumpkin) - 1]
return bibbity(c, d)

def boo (mice, pumpkin):
wand = mice + "!"
carriage = bobitty (pumpkin)
if len(wand) >= len(carriage):
return("Dress!")
else:
return ("midnight")

What is the output of the following function calls? If there is an error, write “Error”. You do not need to specify
the error.

Input Output

boo("***", [l])

boo("*******", [])

boo ("*", [1, 2])

boo ("*x**x*xv (2,8, 7, 12, 157)

3 (8 points). Consider the file shops.csv below. The file contains the name of a chain restaurant or shop

along with all the reviews each individual store has received. You can assume each shop name only appears
once.

shops.csv:
McDonalds,1,4,2,3,3
Taco Bell,1,2,3,3,3
Chik-fil-A,4,3,5,2,1
Starbucks,2,3,3,2,2
Victrola,4,5,4,5,5
Tim Hortons,4,3,3,2,1

Your friend tried to write code that would read in the file and store the contents in a dictionary where the key is
the store name and the value associated with the key is a list of all its reviews as integers. The intended output
is shown below:

{"McDonalds': [1, 4, 2, 3, 3], 'Taco Bell': [1, 2, 3, 3, 31,
'Chik-fil-A': [4, 3, 5, 2, 1], 'Starbucks': [2, 3, 3, 2, 21,
'Victrola': [4, 5, 4, 5, 5], 'Tim Hortons': [4, 3, 3, 2, 1]}

However, your friend has tried but can’t seem to figure out why their code is not working correctly. Their code is
below:

file = open(shops.csv)
d = {1}

for line in file:
data = line.strip() .split ()
d[datal = []
for r in data:
d[data[0]].append(r)

file.close ()

©O© 00 J o U~ w DN o

Continued on the next page...

Name the line number(s) that contain errors. You do not need to specify what the error is. For each line you
identify as containing an error, rewrite the line so that it's now correct. Fixing all errors should lead to the code
achieving the correct output. You cannot add or remove lines of code, you can only update the existing lines.
You may structure your answer like the following:

Line X has an error. The correct version is <correct version of the code>

// Write your answers here

4 (12 points). Suppose you are given a nested list where each list represents a student along with their score
on 3 assignments. Write a function gradebook () that takes in the nested list and returns a dictionary where

the key is the student name and the value is their average score across those three assignments. You cannot
use any built in sum () or avg () Python methods.

An example of what your function should generate is shown below:
grades =[['Trixie', 70, 100, 88],

['Ricky', 77, 86, 831,

['Steve', 75, 62, 947]

gradebook (grades) — {'Trixie': 86.0, 'Ricky': 82.0, 'Steve': 72.0}

Write your code here

5 (12 pts)

5a (6 pts). Write a function get diagonal that takes in a nested list and returns a new list of items that form

a diagonal across the nested list. You can assume the nested list makes a square, i.e. the nested list contains
n lists that each have n elements. Your solution should work for a squared nested list of any size. For example:
nested list = ["I", 5, "hello", 4.20, "Nailing"],
77 "love", 87.23, "my", 21,

2000, 5241, "Ccsg", "2", 47,

\AJ "
4

"exam", 69, 160, False]

[
[
[
["wo ’
["rn", 1, "pumpkin", True, "!"]]
get diagonal (nested list) should return

[("1", "love", "CSE", 160, "!"]

Write your solution here

5b (6 pts). Now rewrite this function as reverse diagonal to return the diagonal in the opposite direction.
Do not use . reverse (). Your solution should work for a squared nested list of any size. The code should
return:

["Nailing", 'my', 'CSE', 'exam', "rn"]

Write your solution here

Extra Credit (1 point): Draw anything (keep it PG and appropriate).

CSE 160 25au Midterm Exam Cheat Sheet

i1f/elif/else syntax # for Loop syntax

if conditioni:

statements

elif condition2:

for i1 in sequence:
statements

other statements # function definition syntax
else: def function_name(paraml, param2,
more statements)
statements
Function Description
range([start,] stop [, step]) Returns a sequence of numbers from start (inclusive) to
stop (exclusive) incremented by step
len(lst) Returns the number of elements in Lst
Lists
Function Description
Ist = [] Creates an empty list
1st[idx] Returns the element in Lst at index idx

lst[start : end]

Returns a sublist of Lst from index start to index end (exclusive)

lst[start : end : step]

Returns a sublist of Lst from index start (default 0) to index end
(exclusive, default Len(Lst)), incrementing by step

1st.append(elmt) Adds the element elmt to the end of Lst. Returns None.

1st.extend(other) Adds each of the elements in the list other to the end of Lst. Returns None.

1st.index(elmt) Returns index of the first occurrence of elmt in Lst, errorif elmt is notin
1st

1st.count(elmt) Returns the number of times elmt occurs in Lst

1st.remove(elmt) Removes first occurrence of elmt from Lst, error if elmt is notin Lst.
Returns None.

1st.pop(idx) Removes and returns the element at index idx in Lst.

1st.pop() With no parameter, removes the last element in Lst

l1st.insert(idx, elmt) Inserts an element elmt in Lst atindex idx. Returns None.

Lst.

sort()

Sorts the given list Lst. Returns None.

Lst.

reverse()

Reverses the order of elements in the list Lst. Returns None.

File I/O

Function

Description

my_file = open(filepath)

Opens the file with given filepath for reading, returns a file object

my_file.close()

Closes file my_file

with open(filepath) as f:
read file

Opens the file with given filepath for reading via the file object £
in the body of the “with” statement.

str.strip()

Given a string str, remove any trailing or ending whitespace.

str.split([separator])

Given a string str, splits the string on the optional separator (will
split on spaces if no separator is given) and returns a list of
separated strings.

Process one line at a time: # Process entire file at once
for line_of_text in my_file: all data_as_a_big string = my _file.read()
process line_of text
Dictionaries
Function Description
my_dict = {} Creates a new, empty dictionary
my_dict = dict()

my_dict[key]

Returns the value associated with the given key inmy_dict

del my_dict[key]

Removes the key (and its associated value) from my_dict

list(my_dict.keys())

Returns a list of keys inmy_dict

list(my_dict.values())

Returns a list of values in my_dict

list(my_dict.items())

Returns a list of tuples of the form (key, value)

Process each key-value pair together: # Process one Rey at a time

for key, value in my_dict.items
process key and value

Common Error Names
IndexError — Index out of range

0: for key in my_dict:
use dictionary’s key

KeyError — Key not found in dictionary
IndentationError - Invalid indentation
TypeError — Operation applied to invalid combination of types

ValueError - Function gets properl

y typed argument, but invalid value

SyntaxError - Invalid Python syntax

NameError — Variable name not fo
FloatingPointError — Floating point

und
operation fails

RuntimeError — Otherwise Unknown Error

	CSE 160 Autumn 2025 - Midterm Exam

