

Full Name:

Email Address (UW Net ID): @uw.edu

CSE 160 Winter 2025 - Final Exam

Instructions:

●​ You have the entire testing period (110 minutes) to complete this exam.
●​ The exam is closed book, including no calculators, computers, phones, watches or

other electronics.
●​ You are allowed a single sheet of notes for yourself.
●​ We also provide a syntax reference sheet.
●​ Turn in all sheets of this exam, together and in the same order when you are finished.
●​ When time has been called, you must put down your pencil and stop writing.

○​ Points will be deducted if you are still writing after time has been called.
●​ You may only use parts and features of Python that have been covered in class up to

this point.
●​ You may ask questions by raising your hand, and a TA will come over to you.

Good luck!

Question Topic Points

Expressions

Functions

Nested Structures

CSVs and File I/0

Debugging

Classes

1 (10 pts). Given the table below, fill in the correct values and type for the matching expression.
In other words, what will be outputted if this code is run in the Python interpreter. If there is an
error, write "Error" in the value column. (You may leave the type column blank, and you do not
have to explain the error.)

Expression Value Type

cse = ‘cse160’
x = cse[1] + str(160 * 1.0)

‘s160.0’

str

list = [(“b”, 3), (“a”, 1), (“d”, 5), (“t”,
1)]
sorted(list, key=itemgetter(1))

[(‘a’, 1), (‘t’, 1), (‘b’, 3), (‘d’, 5)]

list

t = (“a”, “b”, “c”, “d”)
t.append(“g”)

Error

{“a” : {“a” : 1, “b” : 2, “c” : 3},

 “b” : {“a” : 5, “b” : 4, “c” : 3},

 “c” : {“a” : 1, “b” : 2, “c” :
3}}[“c”][“b”]

2

int

a = {‘1.0’, ‘3’, ‘6’, 6/3}

b = {‘six’, ‘1’, ‘3’, 2, ‘2.0’}

x = a & b

{2.0, ‘3’}

set

2 (x pts). Suppose you are also given a list representing a flight schedule where each element
in the list is a tuple of the form (airline, origin, destination, time). For example:

flight_schedule = [

 ("Alaska", "Seattle", "Los Angeles", "0600"),

 ("Alaska", "Seattle", "Los Angeles", "1200"),

 ("Delta", "Seattle", "Los Angeles", "1500"),

 ("Delta", "Los Angeles", "Phoenix", "1300"),

 ("American", "Los Angeles", "Phoenix", "0700"),

 ("United", "Phoenix", "Denver", "0500"),

 ("Southwest", "Phoenix", "Denver", "1400"),

 ("Frontier", "Los Angeles", "Seattle", "1200"),

 ("Delta", "Denver", "Seattle", "1800"),

 ("United", "Denver", "Seattle", "1700"),

 ("Southwest", "Denver", "Seattle", "1000")]

2a. Suppose you are given the following code

def get_flight_paths(schedule):

 paths = {}

 for flight in flight_schedule:

 if((flight[1], flight[2]) in paths):

 if flight[0] not in paths[(flight[1], flight[2])]:

 paths[(flight[1], flight[2])].append(flight[0])

 else:

 paths[(flight[1], flight[2])] = [flight[0]]

 return paths

What is the return value of the function call: get_flight_paths(flight_schedule)

{('Seattle', 'Los Angeles'): ['Alaska', 'Delta'],
 ('Los Angeles', 'Phoenix'): ['Delta', 'American'],
 ('Phoenix', 'Denver'): ['United', 'Southwest'],
 ('Los Angeles', 'Seattle'): ['Frontier'],
 ('Denver', 'Seattle'): ['Delta', 'United', 'Southwest']}

2b. Suppose the flight ("Delta", "Seattle", "Los Angeles", "1500") was delayed
from "1500" to "1700" due to bad weather conditions. Write code that would update the
flight schedule to reflect this change. In other words, write code so that ("Delta",
"Seattle", "Los Angeles", "1500") no longer appears in the list and is instead
replaced with ("Delta", "Seattle", "Los Angeles", "1700"). The updated tuple
DOES NOT need to appear in the same index in the list.

Write your code here

Remove tuple

flight_schedule.remove(("Delta", "Seattle", "Los Angeles", "1500"))

Add new tuple

flight_schedule.append(("Delta", "Seattle", "Los Angeles", "1700"))

3 (x pts). Consider the following dictionary that maps cities to their monthly average
temperatures

city_temps = {"Seattle": {

 "January": 44, "February": 48, "March": 52, "April": 58,

 "May": 66, "June": 69, "July": 77, "August": 76,

 "September": 69, "October": 62, "November": 53, "December": 44},

 "Miami": {

 "January": 69, "February": 72, "March": 77, "April": 77,

 "May": 84, "June": 85, "July": 88, "August": 88,

 "September": 85, "October": 80, "November": 77, "December": 73 }}

3a. Imagine there was an error in the original dataset and the average temperature for Miami in May
was actually 85. Write one line of code that would update the dataset to be correct.

city_temps['Miami']['May'] = 85

3b. Write an average_annual_temp function that takes a city name and dataset and outputs the
average annual temperature for that city as an integer. If the city is not in the dictionary, return
the string "No data found". Here are some examples:

print(average_annual_temp("Seattle", city_temps)) → 59

print(average_annual_temp("Miami", city_temps)) → 79

print(average_annual_temp("Los Angeles", city_temps)) → "No data found"

Write your code here
def average_annual_temp(city, data):

 if city in data:

 total = 0

 count = 0

 temps = data[city]

 for month in temps.keys():

 total+=temps[month]

 count+=1

 return int(total/count)

 else:

 return "No data found"

4 (x pts). Consider you are given the following csv file named grades.csv: The contents of
the file are shown below:

grades.csv

firstname,lastname,course,grade
John,Cena,CSE160,100
John,Cena,PHIL200,60
Jennifer,Coolidge,MATH100,78
Jennifer,Coolidge,MATH103,89
Emma,Stone,GH350,55
Ariana,Grande,EPI201,45
Cynthia,Erivo,CHEM301,76

Write a function student_grades that takes in parameters filename and an integer
passing_grade. The function should return a dictionary where the keys are the student’s full
name (first and last name) and the values are a list of courses where the student has a grade
that is greater than or equal to the passing grade.

For example, if make the function call student_grades(“grades.csv”, 65) the function
will return the dictionary:

{“John Cena”: [“CSE160”], “Jennifer Coolidge”: [“MATH100”,
“MATH103”], “Cynthia Erivo”: [“CHEM301”]}

Write your code here

import csv

def student_grades(filename, passing_grade):

 dict = {}

 infile = csv.DictReader(open(filename))

 for row in infile:

 full_name = row['firstname'] + ' ' + row['lastname']

 course = row['course']

 grade = int(row['grade'])

 if grade > passing_grade:

 if full_name not in dict:

 dict[full_name] = [course]

 else:

 dict[full_name].append(course)

 return dict

5 (x pts). You are given the following code:

def lets_break_this(input_list, input_set, input_int):
​ ‘’’
​ This function takes in a list, a set, and an integer and

removes all occurrences (if any) of the integer in the original
set. Then, every element of the set is added to the original
list, integer amount of times.

Example:
​ After calling lets_break_this([1, 2], {3, 5}, 5),
​ input_set becomes {3} and input_list becomes [1, 2, 3, 3,

3,
3, 3]. The function call should return None.

‘’’
input_set.discard(input_int)
result_list = []
for item in input_list:
​ result_list.append(item)
for item in input_set:
​ for i in range(input_int):
​ ​ result_list.append(item)

input_list = [1, 2]
input_set = {3, 5}
input_int = 5

result = lets_break_this(input_list, input_set, input_int)

assert input_list == [1, 2, 3, 3, 3, 3, 3]
assert input_set == {3}
assert input_int == 5
assert result is None

5a. Fill in the following table on whether the assert statement will fail or not

Statement Will this fail? True or False

assert input_list == [1, 2, 3, 3, 3, 3,
3]

True

assert input_set == {3} False

assert input_int == 5 False

assert result is None False

5b. What is the received value that makes the assert statement from (1) fail?

[1, 2]

5c. Why does the code produce that received value instead of the expected value?

You are appending to the result list instead of the input list inside of the function. Therefore, you
are not updating the input list with the duplicate values (i.e. the duplicate 3s)

5d. How would you fix the code so that it produces the correct expected value?

Change the last line of the code from result_list.append(item) to
input_list.append(item).

Above and beyond answer: You can also remove the first for loop and result_list = [].
This will not change the output of the code and removes code that contributes nothing to final
solution.

6 (15 pts). Read the class written on the following Trainer class written on the following two
pages. It is missing some necessary code indicated by the (______). Using the code already
written and the print output on the last page, fill in the blank lines of code to finish the class.
Hint: Read through the entire class and comments before starting to fill in the blanks.

class BankAccount:

 """

 This BankAccount class will keep track of the

money in your checkings and savings accounts and

purchases made

 """

 def __init__(self, name, checking, savings):

 self.name = name #string type

 self.checking = checking #integer type

 self.savings = savings #integer type

 self.purchases = [] #list type

 def income(self, amount, account):

 """

 Adds the money amount passed into the

 function to the specified account:

 checkings or savings

 """

 if ______________________________________:

 elif _____________________________________:

 else:

 print("Invalid account")

 def make_purchase(self, amount, item):

 """

 Makes a purchase and adds a tuple of the form

 (item, amount) into the purchases attribute

 """

 if (____________________________________) >= 0:

 self.checking-= amount

 else:

 print("Not enough money in checkings!")

 def max_purchase(self):

 """

 Returns the name of the item that has the

 highest purchasing cost in the account.

 If no purchases has been made, replies with

 the message: 'No purchases made'

 """

 if ___:

 print("No purchases made!")

 else:

 item = ""

 max_purchase = 0

 for purchases in _____________________________:

 if ________________________ > max_purchase:

 item = ______________________________

 max_purchase =__________________________

 ​ print("Max purchase is", item, "which cost",

"$" + str(max_purchase))

def display_account(self):

​ print("Account name:", ___________________________)

​ print("Checkings:", "$" + ________________________)

​ print("Savings:", "$" + __________________________)

​ print("# purchases made:", _______________________)

SOLUTION
class BankAccount:

 """

 This BankAccount class will keep track of your checking

 and savings accounts, purchases made, and credit score

 """

 def __init__(self, name, checking, savings):

 self.name = name

 self.checking = checking

 self.savings = savings

 self.purchases = []

 def income(self, amount, account):

 """

 Adds the money amount passed into the function

 to the specified account (checkings or savings)

 """

 if account == "checkings":

 self.checking+=amount

 elif account == "savings":

 self.savings+=amount

 else:

 print("Invalid account")

 def make_purchase(self, amount, item):

 """

 Makes a purchase and adds a tuple of the form

 (item, amount) into the purchases attribute

 """

 if (self.checking - amount) >= 0:

 self.checking-= amount

 self.purchases.append((item, amount))

 else:

 print("Not enough money in checkings!")

 def max_purchase(self):

 """

 Returns the name of the item that has the

 highest purchasing cost in the account.

 If no purchases has been made, replies with

 the message: 'No purchases made'

 """

 if len(self.purchases) == 0:

 print("No purchases made!")

 else:

 item = ""

 max_purchase = 0

 for purchases in self.purchases:

 if purchases[1] > max_purchase:

 item = purchases[0]

 max_purchase = purchases[1]

 print("Max purchase is", item, "which cost", "$" + str(max_purchase))

 def display_account(self):

 """

 Displays account information starting

 with the name, then checkings and savings amount,

 and finally with total number of purchases made

 """

 print("Account name:", self.name)

 print("Checkings:", '$' + str(self.checking))

 print("Savings:", '$' + str(self.savings))

 print("# of purchases made:", len(self.purchases))

Prompts and example output for Question 6

An example usage of the class is listed below. Each line of code (indicated by >>>) was
run one line at a time and the output (if there was any) is printed immediately below.

>>> person = BankAccount(“Joe”, 200, 100)

>>> person.income(50, “checkings”)

>>> person.income(100, “retirement”)

Invalid account

>>> person.max_purchase()

No purchases made!

>>> person.make_purchase(5, “chips”)

>>> person.make_purchase(10, “burger”)

>>> person.make_purchase(1000000, “car”)

Not enough money in checkings!

>>> person.max_purchase()

Max purchase is burger which cost $10

>>> person.display_account()

Account name: Joe

Checkings: $235

Savings: $100

of purchases made: 2

Extra Credit (1 point):

	CSE 160 Winter 2025 - Final Exam

