

CSE 160 25sp Quiz 4 Reference Sheet

File I/O

 Function Description

my_file = open(filepath) Opens the file with given filepath for reading, returns a file
object

my_file.close() Closes file my_file

with open(filepath) as my_file:
 # read file

Opens the file with given filepath for reading via the file
object my_file in the body of the “with” statement. This
closes the file automatically and does not require an
additional call .close().

my_file.read() Returns the entire file's contents as a single string (newlines
included).

my_file.readlines() Returns the file's contents as a list of strings (newlines
included).

Process one line at a time:
for line_of_text in my_file:
 # process line_of_text

Process entire file at once
all_data_as_a_big_string = my_file.read()

Dictionaries

 Function Description

my_dict = {}
my_dict = dict()

Creates a new, empty dictionary

my_dict[key] Returns the value associated with the given key in my_dict

my_dict.keys() Returns the keys in my_dict

my_dict.values() Returns the values in my_dict

my_dict.items() Returns the keys and values as tuples in the form (key, value)

Process each key-value pair together:
for key, value in my_dict.items():
 # process key and value

Process one key at a time
for key in my_dict:
 # use dictionary's key

csv.DictReader
Interprets a standard comma-separated file into a series of dictionaries. For example, the file contents on the
left become the list of dictionaries on the right.

a,b,c
1,2,3
4,5,6

[
 {'a': 1, 'b': 2, 'c': 3},
 {'a': 4, 'b': 5, 'c': 6},
]

 Function Description

reader = csv.DictReader(fileobject) Given a file object (created from either with
open(filepath) as fileobject or fileobject =
open(filepath)), return a reader object that can be looped
over.

list(reader) Converts a csv DictReader object into a list of dictionaries.

for row in reader:
 ...

Loops through one line of data in the file at a time, giving
row as a dictionary.

Lists

 Function Description

lst = [] Creates an empty list

lst[idx] Returns the element in lst at index idx

lst[start : end] Returns a sublist of lst from index start to index end (exclusive). Both
values are optional.

lst[start : end : step] Returns a sublist of lst from index start (default 0) to index end
(exclusive, default len(lst)), incrementing by step. All values are optional.

lst.append(elmt) Adds the element elmt to the end of lst. Returns None.

lst.extend(other) Adds each of the elements in the list other to the end of lst. Returns None.

lst.index(elmt) Returns index of the first occurrence of elmt in lst, error if elmt is not in
lst

lst.count(elmt) Returns the number of times elmt occurs in lst

Classes

 Function Description

class Name:
 # class methods, for example:
 def method(self, [args]):
 # method body

Defines a new class named Name with the subsequently defined
methods.

def __init__(self):
 # method body

The function that is called during class construction/creation, as in
Name().

self Required parameter for all class methods (functions). Refers to the
specific instance of the class. Can hold any number of arbitrary
variables, as in self.name

n = Name() Instantiates (creates/constructs) a new instance of the Name class
and assigns a reference to it in the variable n.

n.method([args]) Calls the method function on the instance defined in n, optionally
passing in any required arguments.

Miscellaneous Functions

Function Description

range([start,] stop [, step]) Returns a sequence of numbers from start (inclusive) to stop
(exclusive) incremented by step

len(lst) Returns the number of elements in lst

"string".split([delimiter]) Returns a list where the elements are the result of separating
"string" by [delimiter] (which defaults to all whitespace
(e.g., " ") if not given).

